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Abstract  

In this work, the capacitated location-routing problem with simultaneous pickup and delivery (CLRP-

SPD) is considered. This problem is a more realistic case of the capacitated location-routing problem 

(CLRP) and belongs to the reverse logistics of the supply chain. The problem has many real-life 

applications of which some have been addressed in the literature such as management of liquid 

petroleum gas tanks, laundry service of hotels and drink distribution. The CLRP-SPD is composed of 

two well-known problems; facility location problem and vehicle routing problem. In CLRP-SPD, a set 

of customers with given delivery and pickup demands should be supplied by a fleet of vehicles that start 

and end their tours at a single depot. Moreover, the depots and vehicles have a predefined capacity and 

the objective function is minimizing the route distances, fixed costs of establishing the depot(s) and 

employing the vehicles. The node-based MIP formulation of the CLRP-SPD is proposed based on the 

literature of the problem. To solve the model, a greedy clustering method (GCM) is developed which 

includes four phases; clustering the customers, establishing the proper depot(s), assigning the clusters 

to depot(s) and constructing the vehicle tours by ant colony system (ACS). The numerical experiments 

on two sets of test problems with different sizes on the number of customers and candidate depots show 

the efficiency of the heuristic method with the proposed method in the literature. Finally, performance 

of the heuristic method to the similar methods in the literature is evaluated by several standard test 

problems of the CLRP. 

Keywords: Capacitated location-routing problem; simultaneous pickup and delivery; greedy 

clustering method; ant colony system.
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1. Introduction and Literature 

Review 

In each supply chain, making the good 

strategies and decisions to reduce the logistic 

costs is the one of the important issues that 

should be considered more. In recent years, the 

efficient, reliable, and flexible decisions on 

location of depots and the vehicle routs are of 

vital importance for managers [Zare Mehrjerdi 

and Nadizadeh, 2013; Tavakkoli-Moghaddam 

et al.2016]. Logistic cost is usually related to 

the locating the distributing centers (DC) or 

depots and routing between the customers and 

depots by a fleet of vehicles [Zare Mehrjerdi 

and Nadizadeh, 2016]. Many researchers 

indicated that if the routes are ignored while 

locating the depots, the costs of distribution 

systems might be immoderate [Webb, 1968; 

Salhi and Rand, 1989; Prins et al.2006]. The 

location-routing problem (LRP) overcomes this 

drawback by simultaneously considering the 

location and routing decisions [Nadizadeh and 

Kafash, 2017]. 

 

The LRP is defined as a special case of vehicle 

routing problem (VRP) in which there is a need 

to solve the facility location problem (FLP), 

simultaneously [Zarandi et al.2011]. Since both 

problems belong to the class of NP-hard 

problem, the LRP is also NP-hard problem 

[Barreto et al.2007; Belenguer et al.2011]. LRP 

is applicable for a wide variety of fields such as 

food and drink distribution, newspapers 

delivery, waste collection, bill delivery, 

military applications, used oil management, 

organization of natural disaster, battery swap 

stations, parcel delivery and various consumer 

goods distribution [Manzour-al-Ajdad et 

al.2012; Rath and Gutjahr, 2014; Zhao and 

Verter, 2014; Yang and Sun, 2015]. 

 

In LRP, the customers should only be supplied 

by a single vehicle; in the other word the 

vehicle meets every customer once. Each 

vehicle also starts and ends its tour at a single 

depot. In the LRP, the proper depot(s) between 

candidate depots as well as the vehicle tours 

should be established. The objective is to 

minimize the total distance of routes as well as 

fixed depot and vehicle costs [Nadizadeh et 

al.2011; Escobar, 2014]. Furthermore, the 

capacitated location-routing problem (CLRP) is 

a version of LRP that constrained by the 

vehicles and depots capacities [Nadizadeh and 

Nasab, 2014]. 
 

Laporte is the first researcher who discusses 

and classifies the LRP models [Laporte, 1988]. 

Min et al. [Min et al.1998] also review the LRP 

literature using a hierarchical classification 

based on the problem characteristics such as the 

number of depots, the capacity of depots and 

vehicles, the form of the objective function and 

etc. More recently, Nagy and Salhi [Nagy and 

Salhi, 2007] perform a comprehensive 

literature review on the LRP models, solution 

approaches, application areas and some future 

works. Since the solution times increase 

exponentially with an increase in the size of the 

problem, most papers in field of LRP and CLRP 

have focused on only new solution approaches 

that are often based on heuristic or meta-

heuristic approaches [Nadizadeh et al.2017].  

Some reviews on solution approaches of CLRP 

exist in literature that can be found in [Duhamel 

et al.2010; Derbel et al.2012; Zarandi et 

al.2013]. 
 

Recently, two review researches are carried out 

to survey recent publications of LRP’s Models; 

Prodhon and Prins analyzed the literature on the 

standard LRP and the extensions such as 

several distribution echelons, multiple 

objectives or uncertain data [Prodhon and Prins, 

2014]. They also compared the results of state-

of-the-art meta-heuristics on standard sets of 

instances for the classical LRP, the two-echelon 

LRP and the truck and trailer problem. Drexl 

and Schneider presented paper discussed 

variants and extensions of the standard LRP, 

which include problems with stochastic and 

fuzzy data, multi-period planning horizons, 

continuous location in the plane, multiple 

objectives, more complex demands or route 

structures, such as pickup and delivery 

demands or routes with load transfers, and 

inventory decisions [Drexl and Schneider, 

2015]. 
 

In this paper, the capacitated location-routing 

problem with simultaneous pickup and delivery 

(CLRP-SPD) is observed. The CLRP-SPD is a 

variant of the CLRP where the vehicles are not 
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Table 1. Related works of the LRP-SPD 

Author(s) Year Contributions and/or approaches. 

[Karaoglan et al.2011] 2011 Branch-and-cut algorithm 

[Karaoglan et al. 2012]  2012 Simulated anealing 

[Yu and Lin, 2014] 2014 Multi-start simulated annealing 

[Huang, 2015] 2015 LRP with pickup–delivery routes and stochastic demands + Tabu search 

[Rahmani et al.2015] 2015 Two-Echelon Multi-products LRP-SPD + Local Search approach  

[Yu and Lin, 2016] 2015 Simulated annealing 

[Rahmani et al.2016] 2016 
Two-Echelon Multi-products LRP-SPD + Nearest neighbour and 

insertion approaches 

[Ghatreh Samani and 

Hosseini-Motlagh, 2017] 
2017 Two-Echelon LRP-SPD with fuzzy demands + Hybrid of SA and GA 

[Wang and Li, 2017] 2017 
LRP-SPD with heterogeneous fleet and time windows + Hybrid heuristic 

algorithm (genetic algorithm + variable neighborhood algorithm) 

only required to deliver goods to customers but 

also to pick up some goods from the customers, 

simultaneously. The CLRP-SPD arises in 

context of reverse logistics and there are 

various real cases, such as distribution of 

bottled drinks, chemicals, LPG (liquid 

petroleum gas) tanks, laundry service of hotels 

and etc. where the customers are typically 

visited for a double service. In the case of the 

bottled drinks for instance, full bottles are 

delivered to customers and empty ones are 

brought back either for reuse or for recycling 

[Nadizadeh, 2017]. In the CLRP-SPD, the 

problem is more complicated than CLRP 

because of the fluctuating loads on the vehicle 

along a route. In the CLRP, the total load of 

each route must not exceed the capacity of the 

vehicle. But in CLRP-SPD, the net change 

(decrease or increase) on the vehicle load at 

each customer must be monitored by the 

vehicle capacity [Catay, 2010]. As a result, the 

CLRP-SPD can reduce to a CLRP after some 

changes [Karaoglan et al.2012]. Because the 

CLRP is NP-hard, the CLRP-SPD is also NP-

hard. 

LRP-SPD, a branch of LRP, was firstly 

introduced by Karaoglan et al. [Karaoglan et 

al.2011]. Although the LRP has been studied 

extensively in the literature, the LRP-SPD has 

received very little attention from researchers 

so far. Table 1 summarizes the related works on 

LRP-SPD, describing their main contributions 

and/or approaches. Karaoglan et al. [Karaoglan 

et al.2011] presented a mathematical 

formulation for the CLRP-SPD and proposed 

an effective branch-and-cut algorithm for 

solving it. Their algorithm composed of several 

valid inequalities and a local search based on 

simulated annealing (SA) to obtain upper 

bounds. Finally to evaluate the proposed 

algorithm, they solved a large number of 

benchmark instances, derived from the 

literature, in a reasonable computation time. In 

next work, Karaoglan et al. [Karaoglan et 

al.2012] suggested two polynomial-size mixed 

integer linear programming formulations for 

the CLRP-SPD and a number of valid 

inequalities to strengthen the formulations. 

While their first formulation was a node-based 

formulation, the second one was a flow-based 

formulation. Furthermore, they proposed a two-

phase heuristic approach based on SA, to solve 

the CLRP-SPD. They also generated the initial 

solutions by two initialization heuristics. 

Consequently, computational results showed 

that the flow-based formulation performs better 

than the node-based formulation in terms of the 

solution quality and the computation time on 

small-size problems. 

 

Yu and Lin [Yu and Lin, 2014] proposed a 

multi-start simulated annealing (MSA) 

algorithm for solving LRP-SPD which 

incorporates multi-start hill climbing strategy 

into simulated annealing framework. The MSA 

algorithm is tested on some benchmark 

instances to verify its performance. Their 

results indicated that the multi-start strategy can 
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significantly enhance the performance of 

traditional single-start simulated annealing 

algorithm. Wang and Li [Wang and Li, 2017] 

studied on a low carbon for LRP with 

heterogeneous fleet, simultaneous pickup-

delivery and time windows. They designed a 

two-phased hybrid heuristic algorithm to solve 

the problem. Firstly, the concept of temporal-

spatial distance with genetic algorithm is used 

to cluster the customer points to construct the 

initial path. Then, variable neighborhood search 

algorithm is applied for local search. 

Computational results showed that the initial 

solution considering temporal-spatial distance 

has obvious advantages in the efficiency of the 

algorithm and the quality of the solution. 

 

So far, many heuristic approaches have 

expanded in the literature of the LRP, which 

can be categorized in four main groups namely, 

sequential, clustering, iterative, and 

hierarchical methods. In sequential methods, in 

first step, the summation of depot to customer 

distances is minimized and then, the VRP is 

solved based upon the location of depots. The 

clustering-based methods, first create clusters 

for the customers, then, either solve the VRP 

for each candidate depot, or solve the traveling 

salesman problem (TSP) to find the best 

location of depots. In iterative heuristics, VRP 

and FLP sub-problems are solved iteratively, 

feeding information from one phase to the 

other. In hierarchical method, location of 

depots is the main problem and routing is a 

subordinate problem [Nagy and Salhi, 2007]. 

This paper presents a new efficient solution 

approach that belongs to clustering-based 

methods, based on the above classification. In 

fact, a greedy clustering method (GCM) is 

proposed to solve the CLRP-SPD in four 

phases. Since a greedy search algorithm is used 

for clustering the customers in first phase, the 

proposed method is called “greedy clustering 

method”. In second phase, among a set of 

candidate depots, the most appropriate one(s) 

are selected to be established. The third phase 

allocates the clusters to depot(s), and finally, 

ant colony system (ACS) is applied to set up the 

best routes between the depot(s) and the 

assigned clusters in fourth phase. 

 

The remainder of this paper is organized as 

follows; In Section 2, problem definition with 

an example of CLRP-SPD including the 

mathematical formulation is given. Details of 

the proposed method are presented in section 3. 

In section 4, the computational results of 

numerical experiments are reported. Finally, 

conclusion and future directions of the paper 

are presented in section 5. 

 

2. Problem Definition and 

Formulation 

There are three entities in the CLRP-SPD that 

linked together. First, a number of candidate 

depots which have limited capacities. Second, 

some of the customers who have specific 

demands where consist of two parts: the 

receiving including shipping goods from / to the 

depot by a vehicle. Third, unrestricted number 

of fleet of homogeneous vehicles which have a 

predefined capacity should serve the customers. 

In the CLRP-SPD, each vehicle is used only in 

one route and starts and finishes its route at the 

same depot. Moreover, the total vehicle load at 

any point of the route should not exceed the 

vehicle capacity. On the other hand, each 

customer is served by exactly one vehicle and 

the total pickup and delivery load of the 

customers assigned to a depot should not 

exceed the capacity of the depot. The problem 

is to determine the locations of depot(s), the 

assignment of customers to the opened depot(s) 

and tour of vehicles with a minimum total cost 

[Karaoglan et al.2012]. 

 

As mentioned previously, in the CLRP, the 

feasibility of a route can be determined by 

checking whether the sum of its customer 

demands does not exceed the vehicle’s 

capacities. In contrast, the feasibility of a 

CLRP-SPD route depends crucially on the 

sequence of visitation of the customers. In the 

example shown in Figure 1, the route 0 → 1 → 

2 → 3 → 0 is feasible, but the routes 0 → 3 → 

1 → 2 → 0 or 0 → 2 → 1 → 3 → 0 are not. 

This fact suggests the use of extended 

formulations in CLRP-SPD against CLRP, 

where auxiliary variables are used to enforce 

route feasibility. 
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Figure 1. Illustrative example for the CLRP-SPD. 

 

The node-based Mixed Integer Programming 

(MIP) formulation for the CLRP-SPD is 

proposed as follow. The formulation is adapted 

to Karaoglan et al. [Karaoglan et al.2012] with 

small changes. Let G = (N,A) be a complete 

directed network where N = N0 ∩ NC is a set of 

nodes in which N0 and NC represent the 

potential depot nodes and customers, 

respectively, and A = {(i, j): i, j ∈ N} is the set 

of arcs. Each arc (i, j) has a nonnegative cost 

(distance) cij that is based on Euclidian distance 

and triangular inequality holds (i.e., cij + cjk ≥
 cik). A capacity Wk and a fixed cost Fk are 

associated with each potential depot k ∈ N0. 

Moreover, a capacity Q and fixed operating 

cost f are linked with an unlimited fleet of 

homogeneous vehicles. Each customer i ∈ NC 

has pickup (pi) and delivery (di) demands, so 

that 0 ≤ di, pi ≤ Q. The variables used in the 

formulation of CLRP-SPD are given as 

follows: 
 

     Decision variables: 
 

xij =  {
1

0
  
if a vehicle goes directly from 

customer i to customer j (∀ i,j ∈ N)

otherwise

 

 

y
k

 =  {
1

0
  
if depot k is opend (∀ k ∈ N0)

otherwise

 

 

zik  =  {
1

0
  
if customer i is assigned to 

depot k (∀ i ∈ NC, ∀ k ∈ N0)

otherwise

 

 

     Additional variables: 

 

Ui : delivery load on vehicle just before 

serving customer i (∀ i ∈ NC) 

Vi : pickup load on vehicle just after serving 

customer i (∀ i ∈ NC) 

 

The node-based MIP formulation of the CLRP-

SPD is given as follows: 

 

Minimize ∑ Fk y
k
+

k∈N0

∑ ∑ cij xij+

j∈Ni∈N

∑ ∑ f x
ki

i∈NCk∈N0

        

                                                                              (1) 

Subject to:  

∑ xij = 1      ∀ i ∈ NC

j∈N

                                       (2) 
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∑ xji − ∑ xij

j∈N

 = 0      ∀ i ∈ N

j∈N

                      (3) 

∑ zik = 1      ∀ i ∈ NC

k∈N0

                                     (4) 

xik ≤ zik            ∀ i ∈ NC, ∀ k ∈ N0                  (5) 

xki ≤ zik            ∀ i ∈ NC, ∀ k ∈ N0                  (6) 

xij+zik+ ∑ zjm ≤ 2      ∀ i,j ∈ 

m∈N0, m ≠ k

NC, i ≠ j, ∀ k ∈ N0                                              (7) 

∑ 𝑑𝑖zik

i∈NC

≤ Wky
k
            ∀ k ∈ N0                   (8) 

∑ 𝑝𝑖zik

i∈NC

≤ Wky
k
            ∀ k ∈ N0                  (9) 

Uj − Ui + Qxij+ (Q − di − dj)xji ≤ Q − di    

 ∀ i,j ∈ NC, i ≠ j                                                (10) 

Vi − Vj + Qxij+ (Q − p
i

− p
j
)xji ≤ Q − p

j
 

∀ i,j ∈ NC, i ≠ j                                                (11) 

Ui + Vi − di ≤ Q            ∀ i ∈ NC                (12) 

Ui ≥ di+ ∑ djxij     ∀ i ∈ NC

j∈Nc, j ≠ i

                 (13) 

Vi ≥ p
i
+ ∑ p

j
xji       ∀ i ∈ NC

j∈Nc, j ≠ i

               (14) 

Ui ≤ Q − (Q − di) ( ∑ xik

k∈N0

)     ∀ i ∈ NC    (15) 

Vi ≤ Q − (Q − p
i
) ( ∑ xki

k∈N0

)     ∀ i ∈ NC     (16) 

xij∈ {0,1}            ∀ i,j ∈ N                           (17) 

zik∈ {0,1}            ∀ i ∈ NC, ∀ k ∈ N0            (18) 

y
k
∈ {0,1}             ∀ k ∈ N0                             (19) 

In this formulation, the objective function (1) 

represents the sum of the fixed depots location 

costs, travel costs and the fixed costs of 

employing vehicles, respectively. Constraints 

(2) guarantee that each customer should be 

served within one route only. Constraints (3) 

state that the number of entering and leaving 

arcs to each node are equal. Constraints (4) 

ensure that each customer must be assigned to 

only one depot. Constraints (5), (6), and (7) 

eliminate the unallowable routes, i.e. the routes, 

which do not start and end at the same depot. 

Constraints (8) and (9) respectively indicate 

that total delivery and pickup loads on any 

depot must not exceed the corresponding depot 

capacity. Constraints (10) and (11) remove sub-

tours and assure that delivery and pickup 

demands of each customer are satisfied, 

respectively. Constraints (12) guarantee that the 

total net load on any customer does not exceed 

the vehicle capacity. Constraints (13), (14), (15) 

and (16) express the relation between decision 

variables and additional variables. It is notable 

that constraints (10) and (11) with constraints 

(15) and (16) give exact values to the additional 

variables on any feasible route, respectively. 

Finally, constraints (17), (18), and (19) specify 

the binary variables used in the formulation. 

 

3. Proposed greedy clustering 

method for the CLRP-SPD 

 

A greedy clustering method, named GCM, is 

presented in this section to solve the CLRP-

SPD. In general, GCM is composed of four 

phases, which is illustrated in Figure 2. In the 

first phase, customers are clustered using a 

greedy search algorithm (Figure 2(a)). The 

nearest customer to the last added customer to 

the cluster is selected to be included in the 

cluster. This is the same as to form a tour in 

Traveling Salesman Problem (TSP), in which 

the nearest city to the current city (in a “greedy” 

search algorithm) is selected as next 

destination. So, the proposed heuristic method 

is called “greedy clustering method”. Each 

cluster can include as much customers as so that 

the total delivery and pickup demands being 
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less than the capacity of vehicle. In the second 

phase, the gravity center of each cluster is 

calculated which is used to select depot(s) 

among candidate depots (Figure 2(b)). The 

clusters are allocated to the opened depot(s) in 

the third step, considering the distance between 

the depot and the gravity center of clusters as 

well as the capacity of the opened depot (Figure 

2(c)). Finally, in the fourth phase, ACS forms 

an admissible tour between each cluster and 

depot (Figure 2(d)). 

The problem is initialized by defining a plane 

comprising the set of customers, depots, and 

their coordinate points, namely CUST and 

DEP, respectively. The heuristic method is 

repeated for a predefined number of iterations. 

When the GCM obtained a better solution, it is 

replaced to the last best known solution. 

Moreover, since in the first phase of GCM, the 

first customer at each cluster is selected, 

randomly, the constituted clusters are different 

together in each iteration. Thus, the proposed 

method can search some feasible solutions 

among all over the solution space. This can help 

that GCM avoid confining suboptimal 

solutions. Details of heuristic method are 

described in following sections. 

 

3.1 Clustering the Customers 
 

The first phase of GCM is clustering of the 

customers. The customers are clustered 

according to the “greedy search algorithm”. At 

first, to found a cluster, a customer is selected 

randomly from the set of non-clustered 

customers belongs to CUST. The algorithm 

searches for the nearest customer to the last 

selected customer of the current cluster. The 

nearest customer is not included to the cluster if 

either of the following criteria is met: 1) The 

number of assigned customers to a cluster 

reached the maximum number of allowed 

customer per cluster and 2) The total pickup 

and delivery demand exceeds the remaining 

capacity of the vehicle. When the number of 

customer in each cluster reaches to a given 

number (N), there is no opportunity for any of 

the customers to enter the current cluster even 

adding its demand to total demand of cluster is 

less than the Cap. This is to balance the number 

of customers in all clusters, which influences 

choosing the depots in next phase, and the final 

solution. The maximum number of members 

for a cluster is determined using a trial and error 

method. 

 

Once a new customer is selected to be included 

to a cluster, total pickup and delivery demands 

of current members adding to its new member 

is compared with the capacity of the vehicle 

(Q). If total demand is less than the Q, the new 

customer is included in current cluster. 

Otherwise, last selected customer is withdrawn 

from the cluster. The greedy search algorithm 

searches for a new customer close to the last 

added member of the cluster among the non-

clustered customers. This procedure helps to 

use the maximum capacity of a vehicle. The 

algorithm founds a new cluster if there is no 

customer to be assigned to current cluster 

considering the capacity of vehicle and the 

maximum number of customers per cluster. 

When there is no non-clustered customer, the 

process of clustering stops. Figure 3 illustrates 

the greedy search algorithm. 

 

3.2 Establishing the Depot(s) 
 

This phase of GCM searches among potential 

sites to establish proper depot(s). First, the 

gravity center of clusters is calculated 

according to equation (20), in which (X(I),Y(I)) is 

the coordinates of gravity center of cluster I, 

(xi,yi) is the coordinates of customer i, and nI is 

the number of customers assigned to cluster I. 

The gravity center is used as a deputy of the 

cluster to select the proper depot(s). Choosing 

the potential site(s) for establishing depot(s) is 

same as a single facility location problem 

(SFLP). 

 

    















 

I

Ii i

I

Ii i

II
n

y

n

x
YX ,,    (20) 

Second, the sum of distances between the 

gravity center of the clusters and each potential 

site, based on Euclidean distance, is calculated 

by equation (21). In this equation, (x*,y*) is the 

coordinates of desired potential site among all 

potential sites. Moreover, wj is the total 

Euclidean distance between potential site j and 

the gravity center of clusters, (xj,yj) is the 
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coordinates of potential site j, (ai,bi) is the 

coordinates of gravity center of cluster i, m is 

the number of clusters, and DEP is the number 

of potential sites. 

 

   

, :

,...,

m

j i j i
j

i

x y Minimize

x a y b
w

j DEP

 



   
   

 



1
2 2 2

1 1

      (21) 

The potential sites are sorted in an ascending 

order and ranked from 1 to DEP according to 

value of equation (21). Then, the top-ranked 

potential site is selected to establish. As will be 

mentioned in next step, if the capacity of the 

current opened depot is unable to fulfill all 

clusters, the next potential site of the sorted list 

is selected to serve the remaining clusters. This 

procedure (i.e., establishing the depot(s)) is 

repeated until all clusters are covered. 

 

3.3. Allocating Clusters to Depot(s) 
 

In this phase, the clusters are respectively 

allocated to the ranked depots. Each depot 

serves clusters as many as possible, if the next 

cluster demand does not exceed the remaining 

capacity of the depot. To allocate the clusters, 

the Euclidian distance of gravity center of each 

cluster to the top-ranked depot is calculated. 

Afterwards, the unassigned clusters are ranked 

in an ascending order based on the distance of 

their gravity centers to the depot. The top-

ranked cluster is allocated to the top-ranked 

depot. If there is an empty capacity for the top-

ranked depot, the second-ranked cluster is 

allocated to the depot. The allocation process to 

a depot will be finished when there is not 

enough capacity to allocate new cluster. In this 

situation, the allocating procedure is repeated 

for next-ranked depots until all clusters are 

allocated. 

 

 
 

Figure 2. Illustrative example for the greedy clustering method. 

a) 

d) c) 

b) 

Customer 

Not-Open Depot 

Opened Depot Assignment 

Gravity Center of Cluster Route of Vehicle 
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Figure 3. The proposed greedy search algorithm. 

  

 

START 

Select a new customer 

from CUST, randomly.  

Calculate total pickup and delivery 

demand of the current cluster with 

new customer (Dem). 

Is Dem ≤ Q? 

Is there any 

non-clustered 

customer?  

Add the new customer to the 

cluster, and remove it from 

the CUST. 

Deduct demand of the selected 

customer from Dem and remove 

it from the current search space. 

Is there any 

customer in current 

search space? 

END 

Search the current space for 

the nearest customer to last 

added member of cluster. 

Yes 

Yes 

No 

No 

No 

Yes 

 

Found a new cluster. 

Is the number of 

customers in 

this cluster ≤ N? 

 

Yes 

No 
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3.4 Routing 
 

In the fourth and last phase of GCM, the routing 

problem for each cluster and its corresponding 

depot is solved. Each cluster is served by 

exactly one vehicle, and some vehicles can be 

supplied by a single depot regarding its 

capacity. In the routing phase, each cluster with 

its related depot is considered as a TSP, which 

is solved by using ant colony system (ACS). 

ACS is referred to ants’ treatment to find food. 

The ants spread a material called pheromone 

and put it on their way so that other ants can 

pass the same route. The pheromone of shorter 

route increases and therefore, more ants move 

from that way. Artificial ants construct a 

solution by selecting a customer to visit 

sequentially, until all the customers in a route 

are visited. Ants select the next customer to 

visit using a combination of heuristic and 

pheromone information. A local updating rule 

is applied to modify the pheromone on the 

selected route, during the construction of a 

route. When all ants construct their tours, the 

amount of pheromone of the best selected route 

and the global best solution, are updated 

according to the global updating rule. More 

details on ACS can be found in [Dorigo and 

Gambardella, 1996; Bouhafs et al.2010; 

Abolhoseini and Sadeghi-Niaraki, 2017]. 

Dorigo et al. [Dorigo and Gambardella, 1996] 

mentioned that the proper parameters’ values in 

their proposed heuristic ACS algorithm are 

α=1, β=5 and ρ=0.65. Hence, these values are 

used in routing phase of the GCM.  

 

4. Computational Results 
 

To evaluate the efficiency of the proposed 

GCM, a set of computational experiments are 

carried out. Since no benchmark instances were 

publicly available for the CLRP-SPD, 

Karaoglan et al. used two test sets of CLRP 

generated by Prodhon [Prodhon, 2008] and 

Barreto [Barreto, 2003]. They applied demand 

separation approaches based on Salhi and Nagy 

[Salhi and Nagy, 1999] and Angelelli and 

Mansini [Angelelli and Mansini, 2002] to 

change CLRP instances to CLRP-SPD 

instances. In this paper, a similar approach like 

in Karaoglan et al. [Karaoglan et al.2011] is 

applied to generate test instances which explain 

briefly as follows. 

 

In Salhi and Nagy’s approach, a ratio ri = 

min(xi/yi;yi/xi), where xi and yi are the 

coordinates of customer i, is calculated for each 

customer i, and then the delivery and pickup 

demands are obtained as di = ⌊ri×q
i
⌋ and pi = 

⌊q
i

− di⌋, where qi is the demand of customer i. 

The instances generated by this type are named 

X. Similarly, another type of instances, called Y, 

is generated by exchanging delivery and pickup 

demands of each customer. In Angelelli and 

Mansini’s approach, the demand of customer i 

is considered as delivery demand (di = qi) and 

the pickup demand is generated by pi = 

⌊(1 − γ)q
i
⌋ if i is even and pi = ⌊(1 + γ)q

i
⌋ if i is 

odd. Two γ values as 0.2 and 0.8 are considered 

to generate two different types of instances 

called Z and W, respectively. Note that, all 

benchmark instances and the demand 

separation approaches described here are 

adapted to Karaoglan et al. [Karaoglan et 

al.2011]. Indeed, this is due to the comparison 

of the proposed method for CLRP-SPD with the 

previous work seems reasonable. 

 

The GCM is coded in MATLAB® 7.0.4 on a 

computer, holding Intel Xeon 2 GHz equipped 

with 1 GB RAM. The comparative results are 

summarized in Tables 2, 3, 4 and 5. The tables 

show the computational results on Barreto’s 

and Prodhon’s sets by applying Salhi and 

Nagy’s and Angelelli and Mansini’s demand 

separation approaches, respectively. Barreto’s 

instances used in Table 1 and 2 include 15 test 

problems which the number of customers varies 

between 8 and 100 and the number of candidate 

depots is between 2 and 15. The name of each 

Barreto’s instance includes the information 

about the name of the author, who has 

generated the instance, the publication year of 

the instance, the number of customers, |NC|, and 

the number of potential depots |N0|, (i.e. 

Author-Year-|NC|×|N0|). Prodhon’s set applied 

in Table 3 and 4 consists of 22 instances which 

the number of customers changes between 20, 

50 or 100, the number of candidate depots is 

either 5 or 10, the number of clusters clu is in 

{1,2,3} (1 means that all nodes scatter on 

Euclidean plane), and vehicle capacity Q is in 
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{a,b} where a = 70 and b = 150. Note that, the 

Prodhon’s instances are denoted as |NC|-|N0|-

cluQ [Karaoglan et al.2011].   

 

The first column of the Tables 2 to 5 gives the 

names of CLRP-SPD instances which 

explained above. The column named DSS 

denotes demand separation strategy. Next two 

columns summarize computational results for 

the Branch-and-Cut (B&C) algorithm proposed 

by Karaoglan et al. [Karaoglan et al.2011]. It is 

important to note that the B&C algorithm have 

been performed on Intel Xeon 3.16 GHz 

equipped with 1 GB RAM computer and a time 

limit of 4 hours has been imposed on each 

instance. The next two columns show the 

solution results of instances for the proposed 

method explained in this paper. The column 

labeled Gap reports the gap percentage. Note 

that, the gap percentage for each instance is 

computed as 100 × [(OFVGCM – OFVB&C)/ 

OFVB&C] where OFVGCM and OFVB&C are 

denoted as objective function value of GCM 

and B&C algorithm, respectively. Since to the 

best our knowledge there is only one approach 

in this research area, the performance of our 

approach has been compared to B&C 

algorithm. 

 

For convenience, Table 6 has summarized the 

results of Tables 2 to 5. Comparison between 

the solutions of GCM and B&C algorithm, 

Table 6 readily reveals that the GCM has 

improved 95 instances out of 148. Also, while 

the GCM has solved 14 instances without any 

changes in solution values, 39 of them have 

failed to compete with the results of B&C 

algorithm. Eventually, the proposed GCM is 

competitive with B&C algorithms in terms of 

solution quality by providing the 95 new best-

known solutions and total average gap of -

4.77%. Further performance of the proposed 

GCM against the B&C algorithm is related to 

the solving time of instances. In Table 6, it can 

be seen that the GCM has solved all instances 

with the average solving time of 160.86 

seconds. But, this value for the B&C algorithm 

with the mentioned quality of answers is equal 

to 9221.01 seconds. This comparison easily 

shows that the GCM has lower running time 

than the B&C algorithm. So, the GCM can also 

be considered more efficient than the B&C 

algorithm in terms of solving time of instances. 

 

Further results of the numerical experiment for 

evaluating the efficiency of GCM is shown in 

Table 7. The efficiency of the proposed method 

is carried out by using 19 standard benchmark 

test problems of CLRP presented by [Barreto, 

2003]. It is noted that, each test problem of 

CLRP-SPD can be reduced to a CLRP. 

Actually, if the pickup demands equal 0, then 

the CLRP-SPD is changed to CLRP. The 

comparative results are summarized in Table 7. 

First column of the Table 7 represents the ID 

number of each test problem. Second column 

reports the best-known solutions (BKS) that are 

given in the literature [Lopes et al.2016]. The 

solutions and CPU times obtained by two 

approaches: the clustering based heuristic (CH) 

[Barreto et al. 2007] and HybPSO-LRP 

[Marinakis and Marinaki, 2008] are shown in 

next columns. Last column of the table shows 

the solution and CPU time of the heuristic 

algorithm. 

 

Results of Table 7 indicate that the heuristic 

algorithm in comparison of two approaches has 

been able to obtain 9 best-known solutions out 

of the 19 test problems. Also, it can be seen that 

the proposed heuristic method is competitive 

with two other algorithms in terms of solution 

quality by providing the lowest average gap 

(see last row of the Table 7). Consequently, 

computational results express that the heuristic 

algorithm is competitive with other algorithms 

in terms of solution quality. 
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Table 2. Computational results for the instances derived from Barreto’s test set by Salhi and Nagy’s 

separation approach. 

Instances DSS 

Brach & Cut 

  

GCM 
Gap 

(%) OFV 
CPU time 

(seconds) 
OFV 

CPU time 

(seconds) 

Srivastava86-8×2 
X 625.43 0.38   625.43 0.12 0.00 

Y 625.43 0.26  625.43 0.11 0.00 

 

Perl83-12×2 
X 242.41 0.60  205.27 0.15 -15.32 

Y 242.41 0.55  205.27 0.23 -15.32 

 

Gaskell67-21×5 
X 454.48 13.34  436.22 3.54 -4.02 

Y 454.48 8.98  436.22 4.21 -4.02 

 

Gaskell67-22×5 
X 629.51 109.62  608.90 4.78 -3.27 

Y 629.51 64.99  608.90 5.01 -3.27 

 

Min92-27×5 
X 2998.8 1074  3051 35.65 1.74 

Y 2998.8 1440  3051.4 39.27 1.75 

 

Gaskell67-29×5 
X 490.34 6.63  480.67 55.45 -1.97 

Y 490.34 6.57  480.67 54.34 -1.97 

 

Gaskell67-32×5_1 
X 563.47 18.77  504.32 53.21 -10.50 

Y 563.47 27.31  504.32 50.30 -10.50 

 

Gaskell67-32×5_2 
X 507.03 13.72  504.32 61.56 -0.53 

Y 507.03 7.87  504.32 55.20 -0.53 

 

Gaskell67-36×5 
X 494.86 18.36  437.11 53.56 -11.67 

Y 494.86 18.13  437.11 58.21 -11.67 

 

Christofides 69-50×5 
X 590.53 14400  568.99 77.45 -3.65 

Y 592.87 14400  566.70 89.76 -4.41 

 

Perl83-55×15 
X 1014.54 14400  937.35 91.67 -7.61 

Y 1017.11 14400  947.49 99.90 -6.85 

 

Christofides 69-

75×10 

X 979.91 14400  837.61 189.56 -14.52 

Y 962.68 14400  847.09 201.34 -12.01 

 

Perl83-85×7 
X 1462.81 14400  1354.54 237.23 -7.40 

Y 1436.52 14400  1313.50 287.41 -8.56 

 

Daskin95-88×8 
X 443.88 14400  443.88 740.67 0.00 

Y 401.98 14068.4  401.98 890.67 0.00 

 

Christofides 69-

100×10 

X 945.75 14400  857.73 955.89 -9.31 

Y 935.24 14400  906.90 1024.45 -3.03 

Average     5843.28     180.7 -5.61 

 
 

 

 



 

Ali Nadizadeh, Hasan Hosseini Nasab 

229 International Journal of Transportation Engineering, 

Vol.6/ No.3/ (23) Winter 2019 

 

Table 3. Computational results for the instances derived from Barreto’s test set by Angelelli and Mansini’s 

separation approach. 

Instances DSS 

Brach & Cut 

  

GCM 
Gap 

(%) OFV 
CPU time 

(seconds) 
OFV 

CPU time 

(seconds) 

Srivastava86-8×2 
W 873.58 0.00  873.58 0.04 0.00 

Z 806.06 0.00  806.06 0.02 0.00 

  

Perl83-12×2 
W 243.98 0.57  205.27 0.85 -15.87 

Z 243.98 0.65  205.27 0.71 -15.87 

  

Gaskell67-21×5 
W 528.42 290.18  501.0654 6.75 -5.18 

Z 513.3 89.43  512.36 7.65 -0.18 

  

Gaskell67-22×5 
W 653.80 3.76  641.53 35.02 -1.88 

Z 653.80 2.66  646.66 44.66 -1.09 

  

Min92-27×5 
W 3142.02 19.66  3182.09 44.44 1.28 

Z 3142.02 18.12  3201.12 55.67 1.88 

  

Gaskell67-29×5 
W 592.1 6.76  592.1 67.89 0.00 

Z 592.1 100.91  592.1 78.09 0.00 

  

Gaskell67-32×5_1 
W 696.38 5694.09  659.78 46.42 -5.26 

Z 643.37 259.67  618.65 53.78 -3.84 

  

Gaskell67-32×5_2 
W 595.27 15.68  536.92 70.09 -9.80 

Z 564.33 30.90  535.68 67.76 -5.08 

  

Gaskell67-36×5 
W 540.37 27.20  475.21 60.56 -12.06 

Z 540.37 46.46  469.18 73.21 -13.17 

  

Christofides 69-50×5 
W 740.38832 14400  708.37 118.33 -4.32 

Z 727.6701 14400  683.58 110.75 -6.06 

  

Perl83-55×15 
W 1609.40 14400  1278.08 56.31 -20.59 

Z 1616.80 14400  1239.93 66.3 -23.31 

  

Christofides 69-

75×10 

W 1384.3276 14400  1081.80 98.38 -21.85 

Z 1250.8598 14400  1016.65 102.34 -18.72 

  

Perl83-85×7 
W 2348.99 14400  1871.42 122.34 -20.33 

Z 2336.50 14400  1871.42 111.34 -19.90 

  

Daskin95-88×8 
W 650.50 14400  593.37 775.45 -8.78 

Z 563.76 14400  587.81 604.34 4.27 

  

Christofides 69-

100×10 

W 1218.44 14400  1162.82 1425.36 -4.56 

Z 1134.40 14400  1083.86 1389.89 -4.46 

Average     5980.23     189.82 -7.82 

 

 

Table 4. Results for instances derived from Prodhon’s test set by Salhi and Nagy’s separation approach. 

Instances DSS 
Brach & Cut 

  
GCM 

Gap (%) 
OFV CPU time (seconds) OFV CPU time (seconds) 

20-5-1a X 16816.50 84.51   16823.24 2.81 0.04 
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Y 16816.00 73.77  16823.24 3.41 0.04 
 

20-5-1b 
X 9167.14 1.86  9167.14 5.63 0.00 

Y 9167.14 0.27  9167.14 6.21 0.00 
 

20-5-2a 
X 17814.7 27.93  17808.40 2.14 -0.04 

Y 17814.7 16.02  17808.40 3.56 -0.04 
 

20-5-2b 
X 10257.30 1.61  10257.30 5.32 0.00 

Y 10257.30 1.38  10257.30 4.9 0.00 
 

50-5-1a 
X 16377.80 14400  16403.18 62.92 0.15 

Y 16391.18 14400  16409.21 79.55 0.11 
 

50-5-1b 
X 13138.15 14400  13184.45 127.78 0.35 

Y 13138.15 14400  13168.35 134.54 0.23 
 

50-5-2a 
X 26419.36 14400  26462.04 59.01 0.16 

Y 26419.09 14400  26461.13 67.6 0.16 
 

50-5-2b 
X 22268.50 213.75  22304.80 99.5 0.16 

Y 22268.50 1147.76  22312.05 107.43 0.20 
 

50-5-3a 
X 11652.09808 14400  11650.85 66.43 -0.01 

Y 11655.6665 14400  11666.86 71.90 0.10 
 

50-5-3b 
X 8482.56 14400  8542.07 122.45 0.70 

Y 8472.41 14400  8512.53 132.56 0.47 
 

100-5-1a 
X 102572.30 14400  101660.86 88.45 -0.89 

Y 102555.05 14400  101659.05 104.65 -0.87 
 

100-5-1b 
X 94997.86 14400  94041.51 211.65 -1.01 

Y 94992.65 14400  94045.16 241.12 -1.00 
 

100-5-2a 
X 105771.22 14400  104781.10 98.11 -0.94 

Y 105771.22 14400  104806.90 90.76 -0.91 
 

100-5-2b 
X 97291.57104 14400  96304.12 289.06 -1.01 

Y 97274.0442 14400  96390.14 255.6 -0.91 
 

100-5-3a 
X 56648.23857 14400  57699.55 79.98 1.86 

Y 56706.38018 14400  57681.65 95.39 1.72 
 

100-5-3b 
X 50279.84706 14400  50305.90 266.89 0.05 

Y 50265.99872 14400  50305.70 255.11 0.08 
 

100-10-1a 
X 110959.70 14400  110063.57 110.56 -0.81 

Y 110961.72 14400  110086.83 123.3 -0.79 
 

100-10-1b 
X 102511.94 14400  102580.00 301.23 0.07 

Y 102497.70 14400  102581.56 298.5 0.08 
 

100-10-2a 
X 204974.95 14400  105740.61 130.34 -48.41 

Y 109639.16 14400  105708.27 125.45 -3.59 
 

100-10-2b 
X 100210.81 14400  98255.80 310.89 -1.95 

Y 100209.09 14400  98304.60 331.23 -1.90 
 

100-10-3a 
X 101819.79 14400  99963.24 145.69 -1.82 

Y 100243.3149 14400  99849.24 130.13 -0.39 
 

100-10-3b 
X 93515.92 14400  93522.97 335.1 0.01 

Y 93568.48 14400  93537.50 368.8 -0.03 

Average     11162.93     135.31 -1.38 
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Table 5. Results for instances derived from Prodhon’s test set by Angelelli and Mansini’s separation. 

Instances DSS 
Brach & Cut 

  
GCM 

Gap (%) 
OFV CPU time (seconds) OFV CPU time (seconds) 

20-5-1a 
W 26457.70 232.48   26512.86 10.21 0.21 

Z 26461.30 75.24  26494.23 8.14 0.12 
  

20-5-1b 
W 18718.80 3.22  18721.68 11.67 0.02 

Z 18703.00 0.94  18715.12 12.56 0.06 
  

20-5-2a 
W 27988.7 37.79  27988.30 7.13 0.00 

Z 27980.6 73.81  27988.30 6.98 0.03 
  

20-5-2b 
W 17125.50 7.09  17125.46 6.43 0.00 

Z 17120.50 4.4  17125.46 7.8 0.03 
  

50-5-1a 
W 37935.14536 14400  32870.09 70.21 -13.35 

Z 32902.9135 14400  32803.58 68.33 -0.30 
  

50-5-1b 
W 26597.13694 14400  26551.14 155.67 -0.17 

Z 26578.55544 14400  26546.76 133.8 -0.12 
  

50-5-2a 
W 43949.05416 14400  42980.40 50.4 -2.20 

Z 41892.72128 14400  41915.76 58.1 0.05 
  

50-5-2b 
W 35708.26047 14400  35717.43 122.65 0.03 

Z 35687.61324 14400  35698.53 147.11 0.03 
  

50-5-3a 
W 24627.39 14400  23599.09 87.9 -4.18 

Z 23562.60 14400  23538.76 65.59 -0.10 
  

50-5-3b 
W 17218.0822 14400  17212.90 150.45 -0.03 

Z 17196.42633 14400  17202.49 112.23 0.04 
  

100-5-1a 
W 162456.77 14400  160551.90 159.7 -1.17 

Z 160362.16 14400  159354.18 134.69 -0.63 
  

100-5-1b 
W 146833.44 14400  145828.19 289.14 -0.68 

Z 146756.94 14400  144782.58 301.54 -1.35 
  

100-5-2a 
W 215851.62 14400  168570.32 86.28 -21.90 

Z 224798.59 14400  166588.13 102.73 -25.89 
  

100-5-2b 
W 199313.6439 14400  152916.61 277.29 -23.28 

Z 199216.808 14400  152840.26 293.51 -23.28 
  

100-5-3a 
W 118696.87 14400  113745.43 119.37 -4.17 

Z 114592.63 14400  112575.12 102.31 -1.76 
  

100-5-3b 
W 102136.13 14400  99170.07 288.98 -2.90 

Z 100071.09 14400  98131.84 312.69 -1.94 
  

100-10-1a 
W 227609.67 14400  224736.17 99.74 -1.26 

Z 223612.90 14400  222638.50 115.14 -0.44 
  

100-10-1b 
W 209293.08 14400  209111.21 345.67 -0.09 

Z 209041.58 14400  209094.28 330.39 0.03 
  

100-10-2a 
W 267097.085 14400  220384.46 134.78 -17.49 

Z 267173.0806 14400  220867.67 145.71 -17.33 
  

100-10-2b 
W 162394.08 14400  169347.72 378.89 4.28 

Z 248472.16 14400  169333.79 380.21 -31.85 
  

100-10-3a 
W 254277.12 14400  178859.35 148.34 -29.66 

Z 170464.48 14400  177956.21 131.23 4.39 
  

100-10-3b 
W 238317.47 14400  165533.13 388.65 -30.54 

Z 154172.07 14400  164617.22 377.42 6.77 

Average     11791.7     153.13 -5.5 
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Table 6. Summarized of the computational results between GCM and B&C algorithm. 

Test set DSS 
No. of 

instances 

Statues of GCM results against B&C 
  

Average of  CPU time 

(seconds) Average of 

Gap (%) 
Improved Unchanging Worsened   Brach & Cut GCM 

Barreto 
X 15 

24 4 2 
 

5843.28 180.7 -5.61 
Y 15  

        

Barreto 
W 15 

23 4 3 
 

5980.23 189.82 -7.82 
Z 15  

        

Prodhon 
X 22 

20 4 20 
 

11162.93 135.31 -1.38 
Y 22  

        

Prodhon 
W 22 

28 2 14 
 

11791.7 153.13 -5.5 
Z 22  

Total   148 95 14 39         

Average   
          9221.01 160.86 -4.77 

 
Table 7. Computational results of heuristic algorithm on standard test problems of CLRP. 

GCM HybPSO-LRP CH 

BKS CLRP instance 

Gap (%) Solution Gap (%) Solution Gap (%) Solution 

0.00 565.6 3.02 582.7 3.02 582.7 565.6 Christ69–50×5 

4.96 886.3 4.96 886.3 4.96 886.3 844.4 Christ69–75×10 

0.00 833.9 6.66 889.4 6.66 889.4 833.9 Christ69–100×10 

0.66 427.7 1.88 432.9 2.59 435.9 424.9 Gaskell67–21×5 

1.09 591.5 0.58 588.5 1.09 591.5 585.1 Gaskell67–22×5 

0.00 512.1 0.00 512.1 0.00 512.1 512.1 Gaskell67–29×5 

0.00 562.2 1.53 570.8 1.69 571.7 562.2 Gaskell67–32×5 

0.00 504.3 1.35 511.1 1.41 511.4 504.3 Gaskell67–32×5 

1.91 469.2 2.24 470.7 2.24 470.7 460.4 Gaskell67–36×5 

0.64 205.3 0.00 204 0.00 204 204 Perl83–12×2 

1.35 1127.1 2.14 1135.9 2.17 1136.2 1112.1 Perl83–55×15 

0.00 1622.5 2.12 1656.9 2.12 1656.9 1622.5 Perl83—85×7 

4.22 580791.5 4.20 580680.2 4.20 580680.2 557275.2 Perl83—318×4 

0.00 670118.5 11.57 747619 11.57 747619 670118.5 Perl83—318×4 

8.18 384.9 8.18 384.9 8.18 384.9 355.8 Dasnki95–88×8 

6.20 46642.7 6.20 46642.7 6.20 46642.7 43919.9 Dasnki95–150×10 

0.00 3062 0.00 3062 0.00 3062 3062 Min92–27×5 

9.11 6229 9.13 6230 9.27 6238 5709 Min92–134×8 

0.00 12290.3 1.50 12474.2 1.50 12474.2 12290.3 Or76–117×14 

2.02  3.54  3.62   Avg. 
      Gap: relative percentage gap calculated as %100 × (solution values obtained by algorithm – BKS)/BKS. 

      Bold numbers indicate that best known solution values are attained by the corresponding approach.
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5. Conclusion 
 

Logistics costs often represent a large part of 

the cost of companies. In order to reduce them, 

facility location and vehicle routing are crucial. 

In the management decision of the logistics, 

facility location problems and vehicle routing 

problems are interdependent. But often, they 

are considered separately and sometimes 

increase the total cost. This paper contributes to 

the capacitated location-routing problem with 

simultaneous pickup and delivery. A node-

based MIP formulation for the CLRP-SPD 

based on Karaoglan et al. [Karaoglan et 

al.2012] is proposed. To solve the problem, a 

GCM with four phases was proposed where 

greedy search algorithm was applied to cluster 

the customers in first phase. Next phase 

determined the gravity centers of cluster to 

select the appropriate depot(s). Clusters of 

customer were assigned to selected depot(s) in 

the third phase. In the fourth phase the routes 

between depot(s) and assigned clusters were 

built by ant colony system. Comparisons of the 

results of the GCM with the B&C algorithm 

obtained from the literature of the CLRP-SPD 

showed that the efficiency of the proposed 

method was satisfactory. In 95 instances out of 

148, the GCM found better solutions. While the 

total average gap of instances was -4.77%, the 

GCM also solved all instances in lower solving 

time compared to the B&C algorithm. Finally, 

it is concluded that the GCM is more effective 

than the B&C algorithm in terms of solution 

quality and solving time of instances. This 

paper has some capable future research 

directions: considering the CLRP-SPD with 

fuzzy pickup and delivery demands, developing 

other solution algorithms e.g. hybrid 

evolutionary algorithms, and developing the 

model by some more realistic assumptions e.g. 

heterogeneous vehicles with unequal 

capacities. 
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