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Abstract 

Vehicle Routing Problem (VRP) is addressed to a class of problems for determining a set of vehicle 

routes, in which each vehicle departs from a given depot, serves a given set of customers, and returns 

back to the same depot. On the other hand, simultaneous delivery and pickup problems have drawn 

much attention in the past few years due to its high usage in real world cases. This study, therefore, 

considered a Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pickup 

(VRPTWSDP) and formulated it into a mixed binary integer programming. Due to the NP-hard nature 

of this problem, we proposed a variant of Particle Swarm Optimization (PSO) to solve VRPTWSDP. 

Moreover, in this paper we improve the basic PSO approach to solve the several variants of VRP 

including Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pickup 

(VRPTWSDP), Vehicle Routing Problem with Time Windows (VRPTW), Capacitated Vehicle 

Routing Problem (CVRP) as well as Open Vehicle Routing Problem (OVRP). In proposed algorithm, 

called Improved Particle Swarm Optimization (IPSO), we use some removal and insertion techniques 

and also combine PSO with Simulated Annealing (SA) to improve the searching ability of PSO and 

maintain the diversity of solutions. It is worth mentioning that these algorithms help to achieve a trade-

off between exploration and exploitation abilities and converge to the global solution. Finally, for 

evaluating and analyzing the proposed solution algorithm, extensive computational tests on a class of 

popular benchmark instances, clearly show the high effectiveness of the proposed solution algorithm. 
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1. Introduction 

The Vehicle Routing Problem (VRP) was 

proposed for the first time by Dantzig and 

Ramser [Dantzig and Ramser, 1959]. VRP is 

addressed to a class of problems for 

determining a set of vehicle routes, in which 

each vehicle departs from a given depot, serves 

a given set of customers, and returns back to the 

same depot. Collection of household waste, 

gasoline delivery, goods distribution and mail 

delivery are the most common applications of 

VRPs. Many variants of VRP may appear since 

there are many cases in real-world conditions, 

such as the number of depots, type of vehicles, 

and customers' requirements. Comprehensive 

details on VRP, its variants, formulations, and 

solution methods has been provided by Thoth 

and Vigo [Thoth and Vigo, 2002]. 

For more realistic applications, this paper 

further investigates a more general situation, 

called the Vehicle Routing Problem with Time 

Windows and Simultaneous Delivery and 

Pickup (VRPTWSDP). In this variant, 

customers require not only the delivery of 

goods but also the simultaneous pickup of 

goods from them, in which each customer 

should be served within a specific time period. 

Such an application is frequently encountered 

for example in the distribution system of 

grocery store chains, each grocery store may 

have a demand for both delivery (i.e. fresh food 

or soft drinks) and pickup (i.e. outdated items 

or empty bottles), and is serviced with a single 

stop by the supplier [Chun-Hua, Hong and Jian, 

2009]. 

It is known that the VRP is NP-hard [Solomon, 

1987]. Moreover, VRPTWSDP is one 

extension of VRP which contains time windows 

and pickup and delivery. Hence, the 

VRPTWSDP is also NP-hard; in this manner, it 

is believed that one may never find a 

computational technique guaranteeing an 

optimal solution to larger instances for such 

problems. Since exact algorithms are not 

efficient for solving NP-hard problems, several 

heuristics and metaheuristics such as Tabu 

Search (TS) [Montane and Galvao, 2006], 

Genetic Algorithm (GA) [Wang and Chen, 

2012] as well as Particle Swarm Optimization 

(PSO) [Ai and Kachitvichyanukul, 2009] have 

been proposed for solving the VRP and its 

variants.  

In this paper, we propose an Improved Particle 

Swarm Optimization (IPSO) approach for 

solving a class of vehicle routing problems 

including VRPTWSDP, VRPTW, CVRP as 

well as OVRP. PSO is a population-based 

search method proposed by Kennedy and 

Eberhart [Kennedy and Eberhart,1995], which 

is motivated by the group organism behavior 

such as bee swarm, fish school, and birds flock. 

PSO imitate the physical movement of the 

individuals in the swarm as a searching method. 

A brief and complete survey on the PSO 

mechanism, technique, as well as application, 

has been provided by Kennedy and Eberhart 

[Kennedy and Eberhart, 2001] and also Clerc 

[Clerc, 2006]. Rest of this section will review 

articles which have used PSO to solve the VRP 

variants.  

 [Xiao, Huang, Li and Wang, 2005] proposed a 

modified particle swarm optimization for 

solving the VRP. [Xiao, Li and Wang, 2005] 

also applied a method based on PSO to solve 

the discrete VRP. They changed the VRP into a 

quasi-continuous problem by designing a new 

real coding and solved it using PSO. [Wang, 

Wu, Zhao and Feng, 2006] also solved the 

OVRP using PSO. The authors applied several 

heuristic methods into the post-optimization 

procedure after decoding, such as Nearest 

Insertion algorithm, GENI algorithm, and 2-

Opt to optimize the inner or outer routes and 

modify illegal solutions. [Zhang, Pang, Xiao 

and Wu, 2006] used a combination of PSO and 

Simulated Annealing (SA) for solving the VRP 

which can avoid being trapped in a local 

optimum using probability search. A new 

hybrid approximation algorithm to solve CVRP 

was introduced by [Chen, yang and Wu, 2006], 

in which discrete particle swarm optimization 

combines global search and local search to 

search the optimal results and SA uses certain 

probability to avoid being trapped in a local 

optimum. [Zhu, Qian, Li and Zhu, 2006] have 

combined local search methods with global 

search methods, attempting to balance both 

exploration and exploitation as well as have 

proposed an improved PSO algorithm for 

solving the VRPTW. [Xu and Huang, 2007] 

have solved the VRP with multiple objectives 

http://www.sciencedirect.com/science/article/pii/S0360835208001290
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by combining PSO with mutation operator and 

with the help of roulette-wheel. [Marinakis and 

Marinaki, 2008] have proposed a new hybrid 

algorithmic nature inspired approach based on 

PSO, for solving the location routing problem. 

Two solution representations and the 

corresponding decoding methods for solving 

the CVRP using PSO also have presented by 

[Ai and Kachitvichyanukul, 2009], in which the 

first representation constructs vehicle routes 

based on the customer priority list and vehicle 

priority matrix, and the second representation 

constructs vehicle routes based on vehicle 

orientation points and the vehicle coverage 

radius. [Ai and Kachitvichyanukul, 2009] 

proposed a formulation for the VRPSPD and 

developed a PSO algorithm with multiple social 

structures for solving it. The introduced 

decoding method starts by transforming the 

particle to a priority list of customers to enter 

the route and a priority matrix of vehicles to 

serve each customer. The vehicle routes are 

constructed based on the customer priority list 

and vehicle priority matrix. A heuristic based 

on PSO algorithm for solving VRPTW which is 

an extension of PSO application for the CVRP 

was also introduced by [Ai and 

Kachitvichyanukul, 2009].  

[Castro, Landa-Silva and Pérez, 2009] 

investigated the ability of a discrete PSO 

algorithm to evolve solutions from infeasibility 

to feasibility for the VRPTW. The proposed 

algorithm incorporates some principles of 

multi-objective optimization to allow particles 

to conduct a dynamic trade-off between 

objectives in order to reach feasibility. [Yannis 

and Magdalene, 2010] employed a hybrid 

genetic – PSO for the VRP in which the 

evolution of each individual of the total 

population, which consists of the parents and 

the offspring, is realized with the use of a 

particle swarm optimizer. During evolution 

process, each individual of the total population 

has to improve its physical movement 

following the basic principles of PSO until it 

will obtain the requirements to be selected as a 

parent. The authors [Yannis and Magdalene, 

2010] also proposed a hybrid PSO which 

combines a PSO algorithm, the multiple phase 

neighborhood search algorithm, greedy 

randomized adaptive search procedure 

algorithm, the expanding neighborhood search 

strategy and a path relinking strategy together 

for solving the VRP.  

[Gong, Zhang, Liu, Huang and Chung, 2012] 

solved the VRPTW using a set-based PSO 

algorithm. [Tian, Ma, Wang Y. L. and Wang, 

K. L. 2011] modeled an emergency supplier 

with fuzzy demands, dynamic transportation 

network, and prioritized supplying and then 

designed a PSO algorithm according to the 

characteristics of the model for solving it. 

[MirHassani and Abolghasemi, 2011] 

implemented PSO for solving the OVRP in 

which a vehicle does not return to the depot 

after servicing the last customer on a route. 

[Moghaddam, Ruiz and Sadjadi, 2012] 

introduced an advanced PSO algorithm for 

solving an uncertain VRP in which the 

customers’ demand is supposed to be uncertain 

with unknown distribution. [Kim and Son, 

2012] proposed a probability matrix based 

hybrid PSO algorithm for the CVRP in which 

the developed PSO approach uses a probability 

matrix as the main device for particle encoding 

and decoding. The proposed algorithm assigns 

customers to routes and determines a sequence 

of customers simultaneously. [Marinakis, 

Iordanidou and Marinaki, 2013] also 

introduced a new hybrid based on PSO for 

solving the VRP with stochastic demands. 

[Goksal, Karaoglan and Altiparmak, 2013] 

solved VRPSPD using PSO algorithm in which 

a local search is performed by variable 

neighborhood descent algorithm, moreover 

they implemented an annealing-like strategy to 

preserve the swarm diversity. [Belmecheri, 

Christian, Farouk and Lionel, 2013] also 

proposed a PSO with a local search for solving 

a complex VRP called “particle swarm 

optimization algorithm for a vehicle routing 

problem with a heterogeneous fleet, mixed 

backhauls and time windows”.  

[Mokhtarimousavi, Rahami, Saffarzadeh and 

Piri, 2014] modeled aircraft landing scheduling 

problem (ASLP) and solved it by a multi-

objective genetic algorithm (NSGA-II) and 

multi-objective particle swarm optimization 

algorithm (MOPSO). [Norouzi, Sadegh-

Amalnick and Alinaghiyan, 2015] presented a 

new mathematical model for measuring and 

evaluating the efficiency of periodic vehicle 

http://www.sciencedirect.com/science/article/pii/S0360835208001290
http://www.sciencedirect.com/science/article/pii/S0360835208001290
http://www.sciencedirect.com/science/article/pii/S0360835208001290
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routing problem (PVRP) and solved it by using 

IPSO and Original PSO. Their computational 

results show that the improved PSO algorithm 

performs well in terms of accuracy but the 

original PSO performs better in computational 

time. [Marinakis, 2015] also presented a new 

version of the particle swarm optimization 

(PSO) algorithm suitable for discrete 

optimization problems and applied it for the 

solution of the capacitated location routing 

problem and for the solution of a new 

formulation of the location routing problem 

with stochastic demands. [Cheng, Chen Y. Y., 

Chen T. L. and Yoo, 2015] implemented an 

efficient hybrid algorithm for solving the joint 

batch picking and picker routing problem which 

the core of the hybrid algorithm is composed of 

the PSO and the ant colony optimization (ACO) 

algorithms. A VRP that simultaneously 

considers production and pollution routing 

problems with time window (PPRP-TW) is 

considered by [Kumar, Kondaraneni, Dixit, 

Goswami and Thakur, 2016] they used a hybrid 

Self-Learning Particle Swarm Optimization 

(SLPSO) algorithm in the multi-objective 

framework to solve the problem. [Chen, Hsiao, 

Reddy and Tiwari, 2016] attempted to address 

the VRP of distribution centers with multiple 

cross-docks for processing multiple products. 

Due to the high complexity of the model, they 

solved it by using a variant of Particle Swarm 

Optimization (PSO) with a Self-Learning 

strategy, namely SLPSO. With respect to both 

the literature reviewed above as well as the best 

of our knowledge, researchers do not take PSO 

algorithm into account to solve the 

VRPTWSDP.  

One of the main contributions of this paper is to 

show that we can combine PSO and other 

algorithms to obtain solutions for VRP 

problems with remarkable results from both of 

quality and computational efficiency point of 

view. In other words, a new combination of 

PSO with some removal and insertion and SA 

algorithm is given to improve the quality of 

PSO results and avoid being trapped in local 

optima. The second contribution of this paper is 

the usage of presented algorithm for solving 

four different kinds of VRP problems and 

solving instances utilized in the literature. The 

rest of this paper will be organized as follows. 

Since VRPTW, CVRP and OVRP are special 

cases of VRPTWSDP, section 2 reviews the 

VRPTWSDP definition and mathematical 

formulation. Section 3 also illustrates the 

developed IPSO algorithm for solving 

VRPTWSDP. Section 4 discusses the 

computational experiment of the proposed 

IPSO on the benchmark instances of a class of 

VRP variants. Finally, Section 5 concludes the 

result of the research. 

2. Problem Description and 

Mathematical Formulation 

Vehicle routing issue can be described as 

follows: a homogeneous fleet of vehicles has to 

visit a number of customers with deterministic 

demands which are located in various cities. 

Furthermore, each customer can be visited at a 

specific time interval, called time window. The 

problem concerned in this paper, called 

VRPTWSDP, is how to send out a fleet of 

capacitated vehicles from a distribution center 

to meet the customers
,
 request (simultaneous 

delivery and pickup) with the minimum 

distance traveled in such a way that: 

a) All routes start at the depot and end at 

the same depot; 

b) Each customer is visited exactly once 

within its time window; 

c) The total of customers, demand for 

each route cannot exceed the vehicle 

capacity. 

In VRPTWSDP we are given a directed graph 

G = (V, A) in which V = {0 , 1 , … , n , n + 1} 

is the set of vertices, and A = {(i, j)|i, j ∈ V} is 

the set of arcs. More precisely V′ = {1,2, … , n} 

represents the set of customer vertices where 

each i ∈ V′ has a pre-specified delivery and 

pickup demand respectively shown by ri > 0 

and pi > 0, to be met by exactly one vehicle. 

Moreover, indices 0 and n + 1, are related to 

the depots which are consequently the start and 

end node of each route. Each arc (i, j) ∈ A is 

associated with a non-negative routing distance 

di,j and travel time ti,j. We assume that a limited 

set  K = {1,2, … , r} of capacitated vehicles is 

available, where each vehicle k ∈ K has 

capacity Ck. We also assume that [ei, li] is time 

window interval in which each customer i ∈ V′ 
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should be visited and si is the service time of 

customer i ∈ V′. Based on the above problem 

description, decision variables have been 

introduced below. 

Ui,k 
Pickup load of vehicle k ∈ K after 

serving customer i ∈ V′. 

Vi,k 
Delivery load of vehicle k ∈ K 

before serving customer i ∈ V′. 

Xi,j,k 

If vehicle k ∈ K travels directly from 

node i ∈ V to node j ∈ V, then 

Xi,j,k = 1; otherwise Xi,j,k = 0. 

STi,k 
Arrival time of vehicle k ∈ K to 

node i ∈ V. 

Finally, the mathematical formulation for 

VRPTWSDP is given here, in which M is an 

arbitrary large constant. 

The objective function (1) minimizes the total 

traveling distance subject to vehicle capacity, 

travel time and arrival time as well as the other 

feasibility constraints, explained as follows. 

Each customer can be visited at most once (2) 

and served by one and only one vehicle (3). 

Vehicle capacity and sub-tour elimination 

constrains which due to polynomial complexity 

has a considerable effect on reducing the 

computational time are (4)-(10). These 

constraints are adaptions of those applied by 

[Karaoglan, Altiparmak, Kara and Dengiz, 

2012]. Constraints (11) and (12) make sure that 

depot is the start and end point of all routes 

which means each vehicle should leave node 0 

and enter node n+1. Constraints (13), (14) and 

(15) ensure feasibility of the time schedule. 

Constraints (16) and (17) denote that no vehicle 

enters to node 0 and leaves from node n + 1, 

consequently. Finally, constraints (18) and (19) 

determine binary variables and the sign of 

variables.  

  

Min  ∑ ∑ ∑ di,jXi,j,k

k∈Kj∈Vi∈V

 (1) 

subject to: 

∑ ∑ Xi,j,k

k∈Kj∈V

= 1;          ∀i ∈ V′ (2) 

∑ Xj,i,k

j∈V

− ∑ Xi,j,k

j∈v

= 0;          ∀i ∈ V′, k ∈ K (3) 

Uj,k − Ui,k + CkXi,j,k + (Ck − ri − rj)Xj,i,k ≤ Ck − ri;      ∀i, j ∈ V′, i ≠ j, k ∈ K (4) 

Vi,k − Vj,k + CkXi,j,k + (Ck − pi − pj)Xj,i,k ≤ Ck − pj;     ∀i, j ∈ V′, i ≠ j, k ∈ K (5) 

Ui,k + Vi,k − ri ≤ Ck;           ∀i ∈ V′, k ∈ K (6) 

Ui,k ≥ ri + ∑ rj

j∈V′

(j≠i)

Xi,j,k;           ∀i ∈ V′, k ∈ K 
(7) 

Vi,k ≥ pi + ∑ pj

j∈V′

(j≠i)

Xj,i,k;           ∀i ∈ V′, k ∈ K 
(8) 

Ui,k ≤ Ck − (Ck − ri)Xi,n+1,k;           ∀i ∈ V′, k ∈ K (9) 

Vi,k ≤ Ck − (Ck − pi)X0,i,k;           ∀i ∈ V′, k ∈ K (10) 

∑ X0,i,k

i∈V

= 1;          ∀k ∈ K (11) 

∑ Xi,n+1,k

i∈V

= 1;        ∀k ∈ K (12) 
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STj,k ≥ STi,k + si + ti,j − M(1 − Xi,j,k);         ∀i, j ∈ V, i ≠ j (13) 

STi,k ≥ ei;          ∀i ∈ V, k ∈ K (14) 

STi,k ≤ li;           ∀i ∈ V, k ∈ K (15) 

∑ ∑ Xi,0,k

k∈Ki∈V

= 0 (16) 

∑ ∑ Xn+1,i,k

k∈Ki∈V

= 0 (17) 

Xi,j,k ∈ {0,1};         ∀i, j ∈ V, k ∈ K (18) 

 Ui,k , Vi,k , STi,k , Z ≥ 0;        ∀i ∈ V , k ∈ K 
(19) 

 

 

3. An Improved Particle Swarm 

Optimization for VRPTWSDP 

3.1 Basic PSO 

PSO has been widely used mainly due to its 

simple concept, effectiveness and its ability 

to find a reasonable solution fast. Since it is 

easy to be trapped into local optima while 

optimizing complex global optimization 

problems, it is not always efficient [Liang, 

Qin, Suganthan and Baskar, 2006]. The 

PSO is designed for global optimization by 

emulating the behavior of animals’ 

societies that do not have any leader in their 

group or swarm, such as bird flocking and 

fish schooling [Chen and Ye, 2004]. The 

process of PSO algorithm in finding 

optimal values follows the work of this 

animal society. 
PSO is a population-based stochastic 

algorithm that starts with an initial 

population of randomly generated particles. 

In the PSO, each solution to a particular 

problem is called particle and the 

population of solutions is called swarm 

[Figureueiredo, Ludermir and Bastos-Filho, 

2016]. Each particle has two properties of 

position and velocity for a search problem 

in a |D|-dimensional space where D =
{1, 2, … , d} is the set of dimensions. A 

particle i ∈ V′ in PSO represents a solution 

Xi = [xi
1, xi

2, … , xi
d] which is associated with 

a velocity vector Vi = [vi
1, vi

2, … , vi
d], where 

d ∈ D. (20) is used to calculate the particle’s 

new velocity according to particle’s 

immediate previous velocity, the distances 

of its current position from its own best 

experience (position) and the group’s best 

experience. Then the particle flies to a new 

position according to (21).  

where pbesti = (pbesti
1, pbesti

2, … , pbesti
D) 

is the best previous position yielding the 

best fitness value for the ith particle in |D|-
dimensional space and gbest =
(gbest1, gbest2, … , gbestD) is the global best 

particle found by all particles so far. 

Both rand1i
d and rand2i

d are two uniform 

random numbers generated independently 

within the range of [0, 1] and stochastic 

exploration nature of PSO is due to these 

random numbers, c1 and c2 are two learning 

factors which represent the particle 

confidence in itself and swarm. The 

parameter w, called inertia weight, which is 

used to balance the global and local search 

abilities of particles and is also to balance 

the exploration and the exploitation 

abilities, a linearly decreasing w over the 

search process is a good choice [Shi and 

Eberhart, 1998]. In order to reduce this 

weight over the iterations, it is updated 

according to the following equation (22); 

where wmax and wmin are the maximum and 

minimum values that the inertia weight can 

take, tmax is the maximum number of 

iterations and t is the current iteration. 

Some other strategies such as using an 

inertia weight with a random component 

can also be used [Poli, Kennedy and 

Blackwell, 2007]. 

The velocities of particles are limited in 

interval [Vmin, Vmax]. The equations (23) 

and (24) are used to initialize the max and 
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min velocity in the dth dimension to the 

solution, i.e., Vmax,d and Vmin,d respectively: 

Where Xmax,d and Xmin,d are the minimum 

and maximum positions of the particle in 

the dth dimension and ψ is a constant factor 

taken from [0,1]. If the resulting value for 

velocity is smaller than Vmin, velocity 

vector is set to Vmin and if the resulting 

value is greater than Vmax, it is set to Vmax. 

After updating velocity, the performance of 

each particle is measured according to the 

fitness function. The PSO algorithm will be 

terminated after a maximum number of 

iterations or when it achieves a maximum 

CPU time [Han, Zhang, Hu and Lu, 2016].  

vi
d(t + 1) = w. vi

d(t) + c1. rand1i
d. (pbesti

d(t) − xi
d(t)) + c2. rand2i

d. (gbestd(t) − xi
d(t)) (20) 

xi
d(t + 1) = xi

d(t) + vi
d(t + 1) (21) 

 

wt = wmax − ((wmax − wmin) tmax⁄ )t (22) 

Vmax,d = ψ(Xmax,d − Xmin,d) (23) 

Vmin,d = ψ(Xmin,d − Xmax,d) (24) 

3.2 Particle Definition and Solution 

Expression 

Regarding the mentioned description of the 

particle behavior in PSO searching a continuous 

space as well as the discrete nature of the VRP, 

we define a suitable mapping between 

VRPTWSDP solution and particles in PSO. 

Each particle is recorded via the path 

representation of each route which is the 

specific sequence of nodes. In this paper, we 

use a special particle coding for VRPTWSDP 

problem which helps to convert discrete 

combinational problem to continuous problem 

so that the PSO algorithm can be directly 

applied. We assume a VRPTWSDP problem 

with |V′| customers and |K| available vehicles. 

A route sequence for the whole problem can be 

defined as a |V′| + |K| − 1 dimensional 

permutation. For example, in a problem with 

three vehicles and nine customers, a possible 

route sequence can be shown as Figureure1. 

The numbers which are greater than |V′| (i.e. 

delimiters) separate the individual routes in the 

sequence. 

 

Figure 1. Sequence of routes for the 

VRPTWSDP 

 

There is one situation that should be pointed 

out: if two numbers larger than |V′| are 

neighbors, it means that there exists a vehicle 

which has not been assigned any delivery job. 

The above-mentioned representation should be 

transformed appropriately, therefore we turn 

each element of the solution into a floating 

point between [0, 1]. Thus, we divide each 

element of the solution by the vector’s largest 

element. More precisely, the previous example 

becomes as follows: 

 

 

Figure 2. Transformed solution into continuous 

vector 

 

 

After calculating the velocity of all particles 

using (20), the elements of the velocity vector 

are transformed back into the integer domain 

using relative position indexing (Lichtblau, 

2002). In this way, the smallest floating value is 

assigned to the smallest integer, the next highest 

floating value to the next integer and so on. 

With this definition, each particle can represent 

a route for the VRPTWSDP. Furthermore, in 

this paper, some of the constraints are 

automatically satisfied. Because of a direct 

relation between the number of constraints and 

problem solving duration, the vehicle capacity 

and the time window constraints are added to 

the objective function. To do this, suppose that 

the relation between g0 and g is g ≤ g0. The 

amount of violation is calculated as 

Violation = {
0              ; g ≤ g0

g−g0

g0
    ; g ≥ g0

. 
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So, general formula for Violation amount will 

be as Violation = Max {0 ,
g

g0
− 1}. 

The vehicle capacity and the time window 

constraints are added to the objective function 

as follows using two large positive numbers R 

and S as the penalty coefficients to deal with 

these constraints. During PSO algorithm 

iterations, the infeasible solutions would attain 

very large fitness values and the particles will 

move to the feasible solutions.  

The detail of the basic PSO algorithm for the 

VRPTWSDP problem is explained below: 

Step 1, Initialization: The initial solution is 

defined by a permutation with |V′| + |K| − 1 

elements, then the routes are determined by 

delimiters.  

Step 2, Evaluation: each element of the 

solution is transformed into a floating point 

between [0, 1] and every particle is evaluated 

according to (25) as well as both gbest and 

pbesti (for each particle i ∈ V′) are saved. 

Step 3, Velocity and Position Update: Each 

particle’s position is updated according to (21) 

and then is transformed back into the integer 

domain. 

Step 4, Judgment: If the termination condition 

is not met, the algorithm continues with step 2. 

Min ∑ ∑ ∑ di,j

kϵKjϵViϵV

Xi,j + R ∑ Max {(( ∑ riXi,j,k

i,jϵV′

) /Ck) − 1 , 0}

kϵK

+ S ∑ Max {1 − (
STi,k

ei
) , 0, (

STi,k

li
) − 1}

iϵV′

 

(25) 

3.3 Improvement of PSO 

Generally, disadvantages of stochastic search 

algorithms include premature convergence due 

to the quick losing of diversity. The 

evolutionary mechanism of PSO can bring in a 

much faster convergence speed once the local 

optimal position has been found, because of 

regarding the global best particle as the optimal 

particle and all the other particles learn from it 

[Zhang, 2012]. If the problems are complex 

with many local optima, the traditional 

algorithms can hardly escape from them. In 

order to avoid the situations described above, in 

this paper, we propose IPSO, in which we use 

some algorithms to improve the searching 

ability of PSO and maintain the diversity of 

solutions. These algorithms help to achieve a 

trade-off between exploration and exploitation 

abilities and converge to the global. Proposed 

techniques are expected to get good results for 

solving complex problems. 

3.3.1 Improvement by Removal and 

Insertion 

Sometimes, the sub-optima are near to the 

global optimum and the neighborhoods of 

trapped individuals may contain the global 

optimum. In such a situation, searching the 

neighborhoods of individuals is helpful to find 

better solutions [Wang, Sun, Li, Rahnamayan 

and Pan, 2013]. Based on this idea, we 

introduce several local searches that have been 

applied to some nature-inspired algorithms to 

escape from local optima and maintain the 

diversity of solutions. Techniques used here 

consist of a removal and an insertion. In the 

other words, in each iteration, some customers 

are removed from their positions and then 

inserted at new positions. The local searches 

applied in this research are divided into two 

groups. One of both groups is chosen randomly 

and then one of the selected groups’ operations 

is executed at random. This process is iterated 

as long as we reach the maximum number of 

iterations. The procedures of two groups are 

described in the following: 

The first group based on randomization, 

consists of four stochastic local search 

operators, namely swap operator, twice tour 

swap operator, reversion operator and insertion 

operator. A brief illustration of these operators 

is given below for completeness and also shown 

in Figure 3. 

 Swap operator: swap operator selects two 

customers (nodes) randomly in a route 

sequence and changes the location of 

visiting them, see [Wang, Huang, Zhou and 

Pang, 2003].  



 

Hamed Alinezhad, Saeed Yaghubi, Seyyed-Mehdi Hoseini-Motlagh, Somayeh Allahyari, 

Mojtaba Saghafi Nia 

 339 International Journal of Transportation Engineering, 

Vol.5/ No.4/ Spring 2018 

 

 

 Twice tour swap operator: it is the same 

as swap operator but selects two range of 

customers instead of selecting two 

customers. Each range should contain at 

least one customer and at most |V′| − 2 

customers, see [Wang, Huang, Zhou and 

Pang, 2003]. 

 Reversion operator: Reversion operator 

also selects two random customers among 

route sequence and changes their location. 

Furthermore, it also reverses the order of 

customers between the two selected nodes, 

see [Wu, Liang, Lee and Lu, 2004]. 

 Insertion operator: Insertion operator also 

selects two random nodes through route 

sequence, regarding the order’ importance 

of selected numbers here. This operator 

shifts the first selected number to the 

position after the second selected number, 

see [Mester, Bräyay and Dullaert, 2007]. 

 
Figure 3. Performance of stochastic neighborhood searching operators 

In the second group, we introduce some 

intelligent removal and insertion techniques for 

generating neighborhood solutions. Applying 

these methods demonstrated below, the quality 

of solutions will be better due to intelligent 

removal and insertion. 

 Worse-Distance Removal 

(WDR): WDR removes the 

customer with the largest cost (dr∗) 

in each iteration [Cho, Cheung, 

Edwards and Fung, 2003], where 

the cost of each customer is defined 

as distance from before (i ∈ V′) and 

next (h ∈ V′) customer/node at the 

same route. In the other words, the 

removed customer is selected 

according to (26). 

dr∗ = arg maxj∈V′ {|dij + djh|}     

(26) 

 Worse-Time Removal (WTR): 

This removal operator removes the 

customer with the largest deviation 

(tr∗) from the vehicle arrival time 

to customer position (STj) and start 

of customer time window (ej) 

[Planeta, 2007]. More precisely, 

the customer for this removal 

strategy is chosen according to 

(27). 

tr∗ = arg maxj∈V′ {|STj − ej|}     (27) 

 Greedy Insertion (GI): GI inserts 

the removed customer (j ∈ V′) at the 

best feasible position, see [Zhang, 

Jue and Mukherjee, 2000]. For 

inserting j between all 

combinations of two customers i ∈
V′ and h ∈ V′, this operator 

calculates equation (28), and then 

selects position with gi∗ cost. 

gi∗ = arg minj∈V′ {dij + djh − dih}   

                            (28) 

 Best Time Insertion (BTI): Because 

of the time window constraints, 

applying this insertion operator is 

valuable and helps the algorithm to find 

the feasible solutions. BTI computes 

(29) for inserting customer j ∈ V′, and 

finally selects the position with 

minimum quantity (ti∗) [Diana and 

Dessouky, 2004]. 

ti∗ = arg minj∈V′ {|STj − ej|}        (29) 

3.3.2 Hybrid with SA 

SA is an approximate local search meta-

heuristic, described by Kirkpatrick et al. (1984), 

which adapts Metropolis-Hastings algorithm 

[Metropolice, Rosenbluth A. W., Rosenbluth 

M. N. and Teller, 1953]. SA searches the 

neighborhoods of current solution and creates a 

new solution by random [Van LAarhoven and 

Aarts, 1987]. The key feature of SA is that it 

does not search for the best solution in the 

neighborhood of the current solution. The new 

solution is accepted or rejected depending on its 
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relative cost. An improved or unchanged 

solution is always accepted and a fraction of 

inferior solutions may also be accepted in the 

hope of escaping from local optima [Naderi, 

Zandieh, Balagh and Roshanaei, 2009]. 

Temperature is used to imitate the cooling 

process and is a parameter for controlling the 

performance of the algorithm. The probability 

of accepting inferior solutions depends on the 

current temperature. If a new solution is 

inferior, it is accepted with the probability of 

e−∆E T⁄  in which ∆E is the difference between 

the value of new objective function and best-

found solution and T is the temperature 

[Romero, Gallego and Monticelli, 1996]. To 

help PSO escape from local optimums, we 

determine an initial temperature which 

decreases in each iteration by a specific ratio 

and let inferior solutions to be accepted with the 

mentioned probability. A brief review of IPSO 

steps is shown in Table 1. 

4. Computational Results 

To evaluate the performance of proposed 

algorithm, we report extensive computational 

tests on the benchmark instances available in 

the literature for the VRPTWSDP, VRPTW, 

CVRP and OVRP. Section 4.1 provides 

parameter tuning of the proposed algorithm. 

Section 4.2 compares the performance of IPSO 

with several heuristics on VRPTWSDP. In 

section 4.3, the results of the developed 

algorithm are compared with some heuristics on 

VRPTW. Finally, the results of CVRP and 

OVRP benchmark instances are also given in 

section 4.4 and 4.5, respectively. The IPSO has 

been implemented in MATLAB 2013 

environment and all experiments were executed 

on an Intel Core i5 with 2.5 gigahertz and 6 

gigabytes of RAM running under Windows 8-

64 bits system. 

The efficiency of the proposed algorithm is 

discussed with respect to the quality of results. 

The quality is due to the deviation from best-

known solutions. In the following tables, Input 

denotes the test problem and Gap is 

calculated by 100 × (CostIPSO − Cbest) Cbest⁄  

, where CostIPSO is the cost of the solution 

found by IPSO and Cbest denotes the cost of 

best-found solution in the literature. The 

other abbreviations used in this section are 
|V′|, |K| and Cost, which are the number of 

customers, the number of vehicles and total 

distance for each instance, consequently. In 

the following, the obtained results are 

explained in details. 

 

4.1 Parameters Tuning 

The result of IPSO algorithm is influenced by 

a number of control parameters, the number 

of particles (swarm size, i.e. |N|), the 

acceleration coefficients (c1 and c2), the 

inertia weight (w), the number of iterations 

(tmax), the initial temperature (T0) and the 

temperature reduction factor (α). According 

to the considerable effect of parameter 

adjusting on the results of the proposed 

algorithm, we have used Taguchi design for 

tuning the algorithm parameters by 

considering five levels for each parameter 

value. The selected parameters are given in 

Table 2. 

  

4.2 Comparison of IPSO with Other 

Heuristics on VRPTWSDP Instances 

We have selected a set of fifteen instances of 

VRPTWSDP that have been utilized by [Wang 

and Chen, 2012] and have divided them into 

two groups, small-size and large-size instances. 

For small-size instances (less than 25 nodes), 

we also have reported exact solutions. For each 

small size instance, CPLEX is run with a time 

limit of 7200 seconds. The results are given in 

Table 3 and Table 4.  

Computational results indicate that our 

algorithm has found the best-found solutions 

for all small-size instances and for large-size 

instances, our method has reached good results 

and the gaps are acceptable. 
Table 1. The frame work of the IPSO  
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Initialization 

Generate the initial population of the particles 

Evaluate the fitness Function of each particle 

Keep Optimum solution of each particle 

Keep Optimum particle of the whole swarm 

Main Loop 

Do until the maximum number of iterations has not been reached: 

      Determine the velocity of each particle 

      Apply velocity limits 

      Determine the position of each particle 

      Apply position limits 

      Evaluate the new fitness function of each particle 

      Update the optimum solution of each particle by accepting a fraction of 

inferior solutions with probability of e−∆E T⁄  

      Update the optimum particle  

      Apply removal and insertion operators 

      Evaluate the new fitness function of each particle 

      Update the optimum solution of each particle by accepting a fraction of 

inferior solutions with probability of e−∆E T⁄  

      Update the optimum particle  

      Update the inertia weight and temperature 

End do 

Return the best particle (the best solution) 

 

Table 2. Parameters setting  

Parameter Value 

|N| 45 

c1 1.99 

c2 2 

wmax 0.93 

wmin 0.35 

tmax 1800 

T0 1250 

α 0.99 

 

Table 3. Cost comparison of IPSO results with small-size benchmark instances on 

VRPTWSDP 

 

Input |V′| |K| Cbest Cplex Wang & Chen (2012) IPSO Gap (%) 

RCdp1001 10 3 348.98 348.98 348.98 348.98 0.00 

RCdp1004 10 2 216.69 216.69 216.69 216.69 0.00 

RCdp1007 10 2 310.81 310.81 310.81 310.81 0.00 

RCdp2501 25 5 551.05 862.14 551.05 551.05 0.00 

RCdp2504 25 4 473.46 746.23 473.46 473.46 0.00 

RCdp2507 25 5 540.87 680.20 540.87 540.87 0.00 

Average   406.98 527.51 406.98 406.98 0.00 

 
Table 4. Cost comparison of IPSO results with large-size benchmark instances on 

VRPTWSDP 

Input |V′| |K| Cbest Wang & Chen (2012) IPSO Gap (%) 

RCdp5001 50 9 994.18 994.18 998.56 0.44 

RCdp5004 50 6 725.59 725.59 725.59 0.00 
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RCdp5007 50 7 809.72 809.72 809.72 0.00 

Rdp201 100 4 1280.44 1280.44 1280.44 0.00 

Rdp204 100 3 775.23 775.23 775.23 0.00 

Cdp201 100 3 591.56 591.56 594.63 0.52 

Cdp204 100 3 590.60 590.60 590.90 0.05 

RCdp201 100 4 1587.92 1587.92 1589.99 0.13 

RCdp204 100 3 822.02 822.02 822.02 0.00 

Average   908.58 908.58 909.67 0.13 

 

4.3 Comparison of IPSO with Other 

Heuristics on VRPTW Instances 

In this section, we test the performance of 

proposed algorithm over fifteen small-size and 

large-size instances. Table 5 reports the 

summary of solutions obtained by the IPSO in 

VRPTW benchmark instances provided by 

[Solomon and Desrosiers, 1988]. IPSO was 

successful to equal the best cost in twelve of 

fifteen instances and the average gap between 

the solutions found by IPSO and the best-found 

solution is 0.06 percent. According to obtained 

results, we can conclude that the proposed 

method can result in good solutions. Moreover, 

Table 5 reports the summary of solutions 

obtained by the IPSO in VRPTW benchmark 

instances provided by [Küçükoğlu and Öztürk, 

2014].  

4.4 Comparison of IPSO with Other 

Heuristics on CVRP Instances 

To test the performance of our method, we have 

selected seven instances proposed by 

[Christofides, Mingozzi and Toth, 1979] for the 

CVRP. The detailed results are provided in 

Table 6. The algorithm has found best-known 

solutions for five instances and for other two 

instances, the gap is 0.19 percent and 0.49 

percent. With due attention to the average 

performance of the proposed algorithm, it is 

obvious that the proposed algorithm is effective 

with the average gap 0.1 percent from the best-

known solutions. 

4.5 Comparison of IPSO with Other 

Heuristics on OVRP Instances 

Table 6 lists the running results of IPSO over 7 

instances taken from [Christofides, Mingozzi 

and Toth, 1979] in OVRP. In this table, we 

compare the result of IPSO with three state-of-

the-art heuristics available in the literature. The 

reported results in Table 7, show that our 

algorithm has found all best-known solutions 

except in one case with the gap 0.16 percent. 

Due to average gap 0.02 percent, we can 

conclude the efficiency of proposed algorithm.  

5. Conclusion 

Simultaneous delivery and pickup problems 

have drawn much attention in the past few years 

due to its high usage in real world cases. 

Furthermore, customers request specific service 

time. This study, therefore, considered a vehicle 

routing problem with simultaneous delivery 

and pickup with time windows and formulated 

it into a mixed binary integer programming 

model denoted by VRPTWSDP. 

Due to the NP-hard nature of the problem, in 

this paper, we proposed a variant of PSO to 

solve VRPTWSDP. To avoid being trapped 

into local optima and maintain diversity, we 

used some removal and insertion algorithms 

and also combined it with SA to make the 

quality of results better. Finally, the proposed 

IPSO tested on VRPTWSDP, VRPTW, CVRP 

and OVRP benchmark instances in different 

sizes and produced very satisfactory results. For 

future research, we can apply this algorithm in 

other variants of the classic vehicle routing 

problem or solve the problem by other 

algorithms and compare the solutions obtained 

from different algorithms. We also can apply 

the proposed algorithm for stochastic vehicle 

routing problem and consider some parameters 

in a stochastic environment. 

 
Table 5. The cost comparison of IPSO with other heuristics on VRPTW benchmark 

instances 
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Input |V′| |K| Cbest 
Küçükoğlu and 

Öztürk (2014) 

Ursani et al. 

(2011) 
IPSO Gap (%) 

R101.25 25 8 617.10 617.10 617.10 617.10 0.00 

R101.50 50 12 1044.00 1044.00 1044.00 1044.00 0.00 

R101.100 100 20 1637.70 1637.70 1637.70 1637.70 0.00 

R102.25 25 7 547.10 547.10 547.10 547.10 0.00 

R102.50 50 11 909.00 909.00 909.00 909.00 0.00 

R102.100 100 18 1466.60 1469.20 1466.60 1468.30 0.12 

R103.25 25 5 454.60 454.60 454.60 454.60 0.00 

R103.50 50 9 772.90 773.90 772.90 772.90 0.00 

R103.100 100 14 1208.70 1225.00 1208.70 1208.70 0.00 

R104.25 25 4 416.90 416.90 416.90 416.90 0.00 

R104.50 50 6 625.40 629.00 625.40 625.40 0.00 

R104.100 100 11 971.50 997.60 971.50 976.40 0.50 

R105.25 25 6 530.50 530.50 530.50 530.50 0.00 

R105.50 50 9 899.30 899.30 899.30 899.30 0.00 

R105.100 100 15 1355.00 1375.80 13550 1359.40 0.32 

Average   897.09 901.78 897.09 897.82 0.06 

 
Table 6. The cost comparison of IPSO with other heuristics on CVRP instances 

Input |V′| |K| Cbest 

Pisinger and 

Ropke 

(2007) 

Vidal et 

al. 

(2012) 

Mester and 

Braysy 

(2007) 

IPSO Gap (%) 

C1 50 5 524.61 524.61 524.61 524.61 524.61 0.00 

C2 75 10 835.26 835.26 835.26 835.26 835.26 0.00 

C3 100 8 826.14 826.14 826.14 826.14 826.14 0.00 

C4 150 12 
1028.4

2 
1029.56 1028.42 1028.42 

1030.3

7 
0.19 

C5 199 17 
1291.2

9 
1297.12 1291.45 1291.29 

1297.6

3 
0.49 

C11 120 7 
1042.1

1 
1042.11 1042.11 1042.11 

1042.1

1 
0.00 

C12 100 10 819.56 819.56 819.56 819.56 819.56 0.00 

Average   909.63 910.62 909.65 909.63 910.81 0.10 

 

Table 7. The cost comparison of IPSO with other heuristics on OVRP instances 

Input |V′| |K| Cbest 

Pisinger and 

Ropke 

(2007) 

Allahyari 

et al. 

(2015) 

Salari et al. 

(2010) 
IPSO Gap (%) 

C1 50 5 416.06 416.06 416.06 416.06 416.06 0.00 

C2 75 10 567.14 567.14 567.14 567.14 567.14 0.00 

C3 100 8 639.74 641.76 639.74 639.74 639.74 0.00 

C4 150 12 733.13 733.13 733.13 733.13 733.13 0.00 

C5 199 17 867.89 896.08a 867.89 869.24 869.24 0.16 

C11 120 7 682.12 682.12 682.12 682.12 682.12 0.00 

C12 100 10 534.24 534.24 534.24 534.24 534.24 0.00 

Average   634.33 638.65 634.33 634.52 634.52 0.02 
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