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Abstract 

This paper aims to assess the application of Support Vector Machine (SVM) regression in order to 

analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of 

asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed 

under the effect of standard axle loading using multi-layered elastic theory and pavement critical 

responses including maximum tensile strain at the bottom of asphalt layer and maximum compressive 

strain at the top of subgrade soil were calculated. Then the support vector machine regression was used 

to predict these two critical responses. Results of this study show that the SVM can be used as a reliable 

tool to predict critical responses of flexible pavements. Analysis of flexible pavements using SVM 

needs less computing time and the SVM can be used as a quick tool for predicting fatigue and rutting 

lives of different pavement sections in comparison with multi-layer elastic theory and finite element 

method. 
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1. Introduction 

The first step in pavement design by means of 

mechanistic – empirical method is analysis of 

pavement structure and computation of 

pavement critical responses subjected to 

different loadings. Several methods have been 

proposed to analyze flexible pavements. 

Boussinesq (1885) was the first person, who 

obtained responses of a semi-infinite system 

affected by point loading [Boussinesq, 1885]. 

Equations provided by Boussinesq were 

developed in next years by other researchers for 

uniform distributed loads [Newmark, 1947; 

Sanborn and Yoder, 1967]. Equivalent 

thickness method was presented by Odemark 

(1949). He assumed that the deflection of a 

multi-layer pavement is equal to the deflection 

of an equivalent semi-infinite system, such that 

thickness and modulus of this equivalent 

system is equal to H and E, respectively. After 

conversion of multi-layer system into a semi-

infinite system, stresses, strains, and deflections 

can be computed using Boussinesq equations 

[Odemark, 1949]. For the first time, Burmeister 

proposed stress and deformation equations for 

two and three-layer systems affected by circular 

loading [Burmister, 1945]. Schiffman proposed 

general solution to analyze stresses and strains 

in a multi-layer elastic system and this method 

is known as multi-layered elastic theory 

[Schiffman, 1962]. Now, most of the flexible 

pavements analysis programs use multi-layered 

elastic theory method to analyze the pavement 

structure. For example, we can refer to the 

programs of BISAR [Jong and Peutz, 1979], 

JULEA [Uzan, 1994], LEAF [Hayhoe, 2002], 

KENLAYER [Huang, 2004], Mnlayer 

[Khazanovich and Wang, 2007], and NonPAS 

[Ghanizadeh and Ziaie, 2015]. Pavement 

modeling using multi-layered elastic theory is 

simpler and solving system using computer 

requires less time compared to finite elements 

method. In addition, for non-professional users 

working with applications based on multi-layer 

elastic theory is easier than finite elements 

methods [Huang, 2004]. For the first time, 

Duncan et al. (1968) used finite elements 

method (FEM) to analyze pavement structure 

[Duncan, 1968]. The most common programs, 

which use finite element method to analyze 

flexible pavements are MICHPAV and 

ILLIPAV [Harichandran et al., 1990; Raad and 

Figueroa, 1980]. General finite element 

programs such as ANSYS and ABAQUS have 

also been used successfully for the analysis of 

pavement structure [Kim et al., 2009; Ahmed et 

al.,2015; Maitra, Reddy and Ramachandra, 

2010; Zheng et al. 2013].  

In finite element method, choosing correct form 

of elements has a major influence on desired 

accuracy. Finite element method is more 

capable in modeling of systems with specified 

dimensions, because the layered method has 

been proposed with the assumption of the 

infinity of layers in the radial direction. In 

addition, the finite element method is 

advantageous to the programs based on 

multilayered system theory for the nonlinear 

analysis of pavement [Huang, 2004]. However, 

in practical applications, it might not be 

possible to use finite element method due to the 

increase of analysis time; therefore, multi-layer 

elastic theory is preferred in comparison with 

finite element analysis method. 

In order to design the pavement under the 

influence of standard axle loading using a 

mechanistic – empirical method, we need to 

analyze the pavement structure under the 

influence of this loading and to determine 

maximum horizontal principal tensile strain at 

the bottom of asphalt layer and also maximum 

vertical compressive strain on the top of 

subgrade soil. For this purpose, it is necessary 

to determine pavement responses at 10 different 

points. Then the fatigue and rutting lives can be 

estimated with respect to critical strain values. 
Artificial intelligence (AI) techniques, such as, 

Artificial Neural Networks (ANN), Fuzzy 

Logic (FL), Genetic Algorithm (GA), Support 

Vector Machines (SVM) or hybrid methods of 

these techniques are successfully used to solve 

complex problems associated with Pavement 

engineering [Goktepe, Agar and Lav, 2006; 

Maalouf et al. 2008; Gopalakrishnan and Kim 

2010; Lin  and Liu, 2010; Patil, Mandal and  

Hegde, 2012; Terzi 2013; Gopalakrishnan et al. 

2013; Fakhri and Ghanizadeh 2014; Soltani et 

al 2015].  

If we can determine the critical responses of 

pavement using AI techniques, it is possible to 

increase the speed of pavement analysis several 

times faster than that of analysis using software 
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based on multi-layered elastic theory or 

software based on FEM.  

Support Vector Machine (SVM) is a machine 

learning technique that has gained enormous 

popularity in the field of classification, pattern 

recognition and regression. 

SVM works on structural risk minimization 

principle that has greater generalization ability 

and is superior to the empirical risk 

minimization principle as adopted in 

conventional neural network models [Patil, 

Mandal and Hegde, 2012]. 

In the present study, SVM method has been 

proposed to predict critical responses of flexible 

pavements and the results obtained from this 

model have been compared with those of 

JULEA program. 
2. Support Vector Machine 

The main idea of support vector machines is to 

map the original data x into a feature space of 

higher order through a non-linear mapping 

function and construct an optimal hyper-plane 

in new space. 

Assuming a set of data  N
iii dxS 1),(  , where 

xi is the input data set, di is the desired result, 

and N corresponds to the size of the data set; the 

SVM regression function is expressed as 

follows [Smola and Scholkopf, 2004]: 

bxwxfy ii  )()(                     (1) 

where ϕi(x) is the non-linear function of input x, 

and both wi and b are constant coefficients. The 

constant coefficients (wi and b) are determined 

by minimizing the regularized risk function as 

follows: 
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and C and ε are used defined parameters and yi 

is the predicted value at period i. In Eq. (2), the 

first term is called regularized term and the 

Lε(d, y) is called the ε-insensitive loss function. 

Loss function will be zero if the predicted value 

is within the ε – tube (Eq. (3) and Fig. 1).  

Figure 

1. The concept of ε. 

Hence, C specifies the trade-off between the 

empirical risk and the model flatness. By 

assuming two positive slack variables ξ and ξ*, 

which represent the distance from actual values 

to the corresponding boundary values of ε-tube 

(Fig. 1), the Eq. (2) is transformed into the 

following constrained form: 
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This constrained optimization problem can be 

solved using the primal Lagrangian form as the 

follows: 
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Eq. (6) is minimized with respect to primal 

variables wi, b, ζ and ζ*, and maximized with 

respect to non-negative Lagrangian multipliers 

(2) 
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αi; αi
*; βi and βi

*. Applying Karush–Kuhn–

Tucker conditions to the regression, and Eq. (6), 

yields the dual Lagrangian form as follows: 
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Eq. (7), αi and αi
* are called Lagrangian 

multipliers which satisfy equalities, αi×αi
*=0. 

optimal desired weights vector of the regression 

hyper-plane with respect to αi and αi
* is written 

as, 
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where, K(xi,xj) denotes the kernel function. The 

most famous kernels are linear kernel, 

polynomial kernel, radial basis function (RBF), 

or Gaussian kernel and sigmoid kernel. Linear 

kernel, polynomial kernel, RBF kernel, and 

sigmoid kernel are as follows:  
Linear kernel 
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Where d, γ, ν and α are kernel parameters. The 

kernel parameters should be set properly 

because it affects the regression accuracy. This 

study uses the RBF kernel function because it is 

the best choice in case of most predicting 

problems [Wu and Chen, 2010]. The RBF 

kernel is also effective and has fast training 

process [Xin et al, 2012]. For the RBF kernel 

function, there are three important parameters 

including Regularization parameter (C), Kernel 

parameter (γ) and tube size of ε-insensitive loss 

function (ε). 
In this study, the optimum value of these 

parameters was determined using try and error 

procedure. 

3. Establishment of Synthetic 

Database 

In this study, two critical responses of pavement 

including maximum tensile strain at the bottom 

of asphalt layer and maximum vertical 

compressive strain on the top of subgrade soil 

are taken into consideration. These two critical 

responses control the bottom-up fatigue 

cracking and rutting depth of pavement [Huang 

2004, NCHRP 2004, Austroad 2010, IRC 

2012]. 

In order to develope a comprehensive dataset 

for training and testing of SVM, 10000 different 

pavement sections subjected to standard axle 

loading, were analyzed and maximum tensile 

strain at the bottom of asphalt layer and 

maximum compressive strain on the top of 

subgrade soil were calculated. The maximum 

value of each response was determined 

according to analysis results for five different 

points at the bottom of asphalt layer and five 

different points on the top of subgrade. 

Standard axle load (single axle with dual wheel 

with the weight of 8.2 tons), pavement section, 

and the position of the response points are 

shown in Figure (1). Statistical specifications of 

inputs and outputs parameters for synthetic 
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database are given in Table (1). Also the 

interface between two succeeding layers was 

assumed as fully bonded. In all the analyses, the 

Poisson's ratio of asphalt concrete, granular 

base, and granular subbase was assumed as 0.35 

and the Poisson's ratio of subgrade was 

assumed as 0.4. These values are typical values 

of Poisson’s ratio for Hot Mix Asphalt, 

untreated granular materials and fine-grained 

soils [Maher and Bennert 2008]. Previous 

findings have also shown that the selection of 

Poisson's ratio has a small effect on pavement 

responses [Huang 2004]. The minimum 

thickness of granular base and granular subbase 

was selected as zero which means that the 

database covers the pavement structures 

without granular base or granular subbase in 

addition to conventional flexible pavements 

with base and subbase layers. Minimum 

resilient modulus of granular base and granular 

subbase was selected based on the minimum 

allowable value of CBR for these two layers 

(30% for granular subbase and 80% for 

granular base)[IMPO, 2010]. Range of resilient 

modulus of subgade soil was selected between 

30 to 200 MPa which is equivalent to CBR of 

3% to 60% for subgrade soil [IMPO, 2010]. 

In order to analyze different pavement sections, 

NonPAS software was employed, which has the 

capability of linear and nonlinear analysis of 

pavement using multi-layered elastic theory. 

Detailed verification of NonPAS code using 

Kenlayer program proved that the the NonPAS 

can accurately predict the pavement responses 

subjected to single and multiple loading 

[Ghanizadeh and Ziaie 2015]. 

4. The Determination of the 

Appropriate Values for Kernel 

Parameters 

In this study, STATISTICA 12.0 was used for 

training and testing SVM. 80 percent of records 

(8000 records) were considered as training set 

and 20 percent of records (2000 records) were 

considered as testing set.  Input or independent 

variables in SVM model were considered as 

thickness and modulus of different layers of 

pavement and output or dependent variable was 

assumed as critical response of pavement 

(maximum horizontal principal tensile strain at 

the bottom of asphalt layer or maximum 

vertical compressive strain on the top of 

subgrade). In this research, two SVM model 

were trained and tested for predicting two 

critical responses. The optimum value of 

parameters in case of each SVM model 

including regularization parameter (C), kernel 

parameter (γ), and the tube size of ε-insensitive 

loss function (ε) was determined based on the 

try and error method as 21, 2 and 0.0001, 

respectively 

  

 

Figure 2. Specifications of standard axle, pavement section, and response points. 

5. Performance of Support Vector 

Machine 

Statistical parameters of SVM regression 

for both training and testing sets are given 

in Table 2 and 3. It can be seen that the 

coefficient of determination (R2) in case of 

training set, testing set and overall data is 

greater than 0.998. It is also resulted that 

the developed SVM has an acceptable 
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generalization because the coefficient of 

determination for both training and testing 

set is the same. 

Performance of Support Vector Machine 

for predicting critical responses of flexible 

pavement in case of training and testing 

sets, are presented in Figures (3) to (6). 

These figures confirm that the trained 

SVM is capable of predicting critical 

responses of pavement with high accuracy.  
 

 

Table 1. Statistical characteristics of the inputs and outputs used in database development 

Statistical Parameter H1 H2 H3 E1 E2 E3 E4 tε cε 

Minimum 5.00 0.00 0.00 800.00 200.00 100.00 30.00 16.45 26.50 

Maximum 45.00 50.00 60.00 10000.00 400.00 200.00 200.00 597.76 1473.29 

Mean 22.69 25.98 32.73 5293.44 296.12 154.89 86.77 111.83 171.57 

Standard Deviation 11.06 14.03 18.23 2800.68 64.18 29.50 38.73 82.11 150.13 

Median 22.72 25.14 30.30 5056.67 300.00 153.06 82.35 86.54 126.13 

Hi: Thickness of the ith layer in cm. 

Ei: Resilient modulus of the ith layer in MPa. 

εt: Maximum horizontal principal tensile strain at the bottom of asphalt layer in micro-strain. 

εc: Maximum compressive strain on the top of subgrade in micro-strain 

 

Table 2. Statistical parameters of SVM for 

predicting maximum tensile strain. 

Data set 
Training 

set 

Testing 

set 
Overall 

RMSE 3.56 17.70 6.37 

S.D ratio 0.023 0.056 0.031 

R2 0.999 0.998 0.999 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Performance of SVM for predicting 

maximum horizontal principle tensile strain 

based on training set. 

 

Table 3. Statistical parameters of SVM for 

predicting maximum compressive strain. 

Data set 
Training 

set 

Testing 

set 
Overall 

RMSE 21.64 18.95 21.11 

S.D ratio 0.030 0.034 0.031 

R2 0.999 0.999 0.999 

 

 

Figure 4. Performance of SVM for predicting 

maximum compressive strain on the top of 

subgrade based on training set. 
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Figure 5. Performance of SVM for predicting 

maximum horizontal principle tensile strain 

based on testing set. 

 

Figure 6. Performance of SVM for predicting 

maximum compressive strain on the top of 

subgrade based on testing set. 

The frequency histograms for prediction error 

of critical strains using training and testing sets 

are presented in Figure (7) and Figure (8), 

respectively. As can be observed, prediction 

error of maximum horizontal principal tensile 

strain at the bottom of asphalt layer and 

maximum compressive strain on the top of 

subgrade in most cases is lower than 5 percent. 

6. Validation of SVM Model using 

JULEA Program  

The results of analysis obtained by means of 

JULEA program were used to validate the 

proposed SVM model in this study. JULEA 

program is among the most powerful and 

accurate pavement analysis programs that uses 

the multi-layered elastic theory for the analysis 

of pavements. This program has been developed 

by Dr. Jacob Uzan and has been employed as the 

analysis core for analysing flexible pavements in 

Mechanistic-Empirical Pavement Design Guide 

(MEPDG) software [NCHRP 2004]. For 

comparison of responses resulted by SVM and 

JULEA, eight different pavement sections were 

considered and the critical strains at the bottom 

of asphalt layer and on the top of subgrade were 

computed using SVM model and JULEA 

program. The specifications of these eight 

pavement sections as well as the obtained 

responses using SVM and JULEA program are 

given in Table (2). As evidence, critical 

responses computed using SVM model are very 

close to the critical responses computed using 

JULEA. The maximum prediction error is less 

than 10 percent.  

7. Parametric Analysis 

In order to investigate the effect of different 

parameters on critical responses of flexible 

pavements, the Cosine Amplitude Method 

(CAM), was employed. The express similarity 

relation between the target function and the 

input parameters is used to obtain by this 

method. In this method, all of data pairs are 

expressed in the common X-space. They would 

form a data array X defined as Eq. (13) [Yang 

and Zhang, 1997]: 

 nxxxxX ,...,,, 321                                     (9) 
where xi, is a vector of the length of m and is 

shown in the Eq. (14).  

 imiiii xxxxx ,...,,, 321                                   (10) 
Thus, each record of the dataset can be assumed 

as a point in the m-dimensional space and this 

point requires m-coordinates to be fully 

defined. Equation (15) can be used to compute 

the strength of the relationship between xi and 

xj:  
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Regarding the CAM method, the strength of the 

relationship between maximum horizontal 

principal strain at the bottom of asphalt layer 

and input parameters, and also maximum 

compressive strain on the top of subgrade and 

input parameters were presented in Figures 9 

and 10, respectively.  
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(A) (B) 

Figure 7. Error percentage of predicted strain for test data: A) Maximum horizontal principle tensile 

strain (HPTS) at the bottom of asphalt layer and B) Maximum compressive strain on the top of subgrade 

  

(A) (B) 

Figure 8. Error percentage of predicted strain for test data: A) Maximum horizontal principle tensile 

strain (HPTS) at the bottom of asphalt layer and B) Maximum compressive strain on the top of subgrade 

The results show that the thickness as well as 

resilient modulus of asphalt concrete layer are 

the most influencing factors on the maximum 

horizontal strain at the bottom of asphalt layer. 

Also, the thickness of subbase layer and the 

resilient modulus of subgrade soil are the 

parameters with the least effects on the 

maximum horizontal strain at the bottom of 

asphalt layer. Moreover, thickness of different 

pavement layers and resilient modulus of 

subgrade soil are the most sensitive parameters 

affecting the maximum vertical strain on the top 

of subgrade layer, and thickness of subbase 

layer is the least sensitive parameters. Similar 

results have been reported by Behiri (2012). He 

studied the effect of variation in modulus and 

thickness of different layers, on the fatigue and 

rutting life of pavement. He stated that fatigue 

life has no sensitivity with the variation of base 

thickness compared with rutting life, which is 

high sensitive. While both fatigue and rutting 

lives have a good sensitivity with the variation 

of surface thickness. He also concluded that 

increase of elastic modulus of asphalt or base 

layers has not obvious effect on the rutting life 

at base thickness thinner than 300 mm, thicker 
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thickness lead to obvious increase in rutting 

life. With respect to fatigue life, it has no 

sensitivity with the variation of base thickness 

while has a good sensitivity with the variation 

of surface modulus or base modulus at all 

values of base thickness [Behiry, 2012].  

 

Table 4. Comparison of the responses obtained using SVM and JULEA. 

H1 

(cm) 

H2 

(cm) 

H3 

(cm) 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

E4 

(MPa) 

SVM JULEA 
Error 

percentage 

εt εc εt εc εt εc 

8 15 20 1500 220 110 40 377.50 939.58 383.53 861.13 -1.57 9.11 

9 15 20 2000 240 120 45 320.76 760.28 320.09 717.22 0.21 6.00 

10 15 20 2500 260 130 50 271.83 620.51 266.74 603.26 1.91 2.86 

13 20 30 3000 280 140 55 193.46 315.49 187.13 320.59 3.38 -1.59 

14 20 30 3500 300 150 60 163.09 273.85 157.79 277.49 3.36 -1.31 

15 20 30 4000 320 160 65 137.26 239.12 134.30 241.80 2.20 -1.11 

18 25 40 4500 340 170 70 98.45 146.12 98.23 147.54 0.22 -0.96 

19 25 40 5000 360 180 75 84.15 129.18 85.08 131.30 -1.09 -1.61 

εt: The maximum horizontal principal tensile strain at the bottom of asphalt layer, micro-strain 

εc: The maximum compressive strain on the top of subgrade, micro-strain 

 

Figure 9. Strength of the relationship between 

different parameters and maximum horizontal 

strain at the bottom of asphalt layer. 

Figure 10. Strength of the relationship between 

different parameters and maximum vertical 

strain on the top of subgrade layer. 

8. Conclusion 

This study indicated that the critical responses 

computed using SVM model are very close to 

the critical responses computed using multi-

layer elastic theory and the maximum 

prediction error is less than 10 percent. Due to 

the fast pavement analysis by means of SVM 

method in comparison with the finite element 

method and multi-layered elastic theory, it is 

possible to use the support vector machine 

regression without introducing the position of 

response points in order to quickly and 

accurately analyze the pavement structure. The 

fast analysis of pavements using this method 

allows the possibility of analyzing a very large 

number of pavement sections in order to 

optimal design of flexible pavements. 

Parametric analysis using Cosine Amplitude 

Method (CAM) shows that the thickness as well 

as resilient modulus of asphalt concrete layer 

are the most influencing factors on the 

maximum horizontal strain at the bottom of 

asphalt layer. Moreover, thickness of different 

pavement layers and resilient modulus of 

subgrade soil are the most sensitive parameters 

affecting the maximum vertical strain on the top 

of subgrade layer. Since in practice the loading 
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spectra are commonly used for design of 

pavements using mechanistic-empirical 

methods, this research needs to be completed by 

developing other support vector machines in 

case of each loading axle. 
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