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Abstract:
This paper presents a novel bi-objective multi-product capacitated vehicle routing problem with uncertainty in 
demand of retailers and volume of products (UCVRP) and heterogeneous vehicle fleets. The first of two conflict 
fuzzy objective functions is to minimize the cost of the used vehicles, fuel consumption for full loaded vehicles and 
shortage of products. The second objective is to minimize the shortage of products for all retailers. In order to get 
closer to a real-world situation, the uncertainty in the demand of retailers is applied using fuzzy numbers. Additionally, 
the volume of products is applied using robust parameters, because the possible value of this parameter is not distinct 
and belongs to a bounded uncertainty set. The fuzzy-robust counterpart model may be larger than the deterministic 
form or the uncertain model with one approach and it has with further complexity; however, it provides a better 
efficient solution for this problem. The proposed fuzzy approach is used to solve the bi-objective mixed-integer linear 
problem to find the most preferred solution. Moreover, it is impossible to improve one of the objective functions 
without considering deterioration in the other objective functions. In order to show the conflict between two objective 
functions in an excellent fashion, a Pareto-optimal solution with the ε-constraint method is obtained. Some numerical 
test problems are used to demonstrate the efficiency and validity of the presented model.  
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Multiple products.

��������
* Corresponding author. E-mail: tavakoli@ut.ac.ir 
1. Professor, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
2. M.Sc. Student, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
2. M.Sc. Grad., Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran



208 

1. Introduction 
     A vehicle routing problem (VRP) was one of 

the most crucial and essential issues in recent 
years.  The objective of this problem is obtained 
through optimal route and distribution of vehicles 
in different nodes in a network. Vehicles start their 
travel from the depot and after serving all vertices 
(nodes), return to the depot (except in an open 
VRP). There are different types of a VRP 
according to different types of real-world 
applications. 

There are several assumptions in formulating 
VRP. Some considered assumptions in this study 
are include: a capacitated VRP considering the 
load on each route does not exceed the capacity of 
a vehicle. A multi-commodity VRP that is 
considering different types of products transported 
on each route. A heterogeneous or homogeneous 
fleet considers different types or capacity for 
vehicles. Also, a multi or single-depot VRP is one 
of the critical assumption. 

One of the most regular objective functions is to 
minimize the cost. For instance, the cost of fuel 
consumption with respect to the distance between 
each node is considered in a few papers. It is one 
of the most important issues in the company to 
save the fuel cost in transportation. Some papers 
discussed about the effect of distance travel on the 
fuel consumption, [Kara, Kara and Yetis, 2007] 
proposed a capacitated VRP with a new cost 
function based on the distance and the load of a 
vehicle. The empirical analysis of [Sahin et al, 
2009] discussed for the truck with the capacity of 
20 tons, when the fuel cost for 1000 km traveled 
included 60% of the total cost. Therefore, it is 
important to reduce the fuel consumption at the 
operational level. Hence, the travel distance is one 
of the critical factors effecting on the fuel 
consumption when it is considered the full loaded 
vehicle capacity.   

Also, one of the problems dealing with the VRP 
is inventory decision. The inventory-routing 
problem (IRP) is regarded as a medium-term 
problem; however, the VRP is a short-term 
problem [Moin and Salhi, 2007]. The first study on 
the IRP was introduced by [Golden, Assad and 
Dahl, 1984] to identify a routing problem take into 
account the inventory assumptions. One of the 
critical issue is to integrate inventory management 
with a routing decision. As recent studies on this 
problem [Yu, Chen and Chu, 2008] proposed a 
model with split delivery and homogeneous fleet. 
They used a Lagrangian relaxation method that is 

decomposed in two sub-problems; inventory and 
routing problems in order to solve the large-scale 
problem. [Raa and Aghezzaf, 2009] proposed an 
integrated model of inventory management and 
vehicle route with a fleet size in a practical case in 
the context of vendor-managed inventory (VMI) 
with a cyclic approach. The aim is to minimize the 
average distribution and inventory cost. [Coelho, 
Cordeau and Laporte 2012] proposed and IRP 
model with a more practical case in the context of 
VMI. They assumed that products could be 
transshipped from a supplier to a customer and a 
customer to another customer. [Li et al, 2014] 
investigated a novel model for the IRP for a 
gasoline distribution industry, which minimizes 
travel time. They provided tabu search and an 
adapted US algorithm as a part of a solution 
procedure to obtain a better solution. 

In the last two decades, the applications of this 
problem under uncertainty have increased in both 
practitioners and researchers area. This uncertainty 
existed in the board spectrum of the theories that 
include stochastic, fuzzy and robust uncertainty. 

Fuzzy uncertainty is associated with the 
ambiguity of linguistic statements. These 
ambiguous situations may occur in objectives or in 
the parameters. It is often happening in parameters, 
such as demand and time windows. [Cheng, Gen 
and Tozawa 1995] proposed a VRP model with 
time windows and considered due-time instead of 
fixed time windows. Their fuzzy membership 
function shows the degree of customer satisfaction 
of the service time. [Wang and Wen, 2002] 
investigated a VRP model for a Chinese postman 
problem and considered fuzzy time windows. 
[Tang et al, 2009] proposed bi-objective VRP 
model with fuzzy soft time windows and 
considered a linear and concave fuzzy 
membership. Their objective functions are to 
minimize the routing cost and maximize the 
overall customer satisfaction level. [Ghannadpour 
et al, 2014] proposed a multi-objective dynamic 
VRP with fuzzy time windows. The objective 
functions are to minimize the total travel distance 
and waiting time on vehicles and maximize 
customer preferences for service. They proposed a 
genetic algorithm with three basic modules to 
solve this problem. 

Other studies have considered demand and 
travel time as fuzzy parameters. [Gupta, Singh and 
Pandey, 2010] solved a multi-objective VRP with 
fuzzy time windows. The objective functions are to 
minimize the fleet size, maximize the average 

International Journal of Transportation Engineering,
Vol 3/ No. 3/ Summer 2015

International Journal of Transportation Engineering,
Vol 3/ No. 3/ Summer 2015

Solving a Bi-Objective Multi-Product Vehicle Routing Problem with Heterogeneous Fleets under

208 

1. Introduction 
     A vehicle routing problem (VRP) was one of 

the most crucial and essential issues in recent 
years.  The objective of this problem is obtained 
through optimal route and distribution of vehicles 
in different nodes in a network. Vehicles start their 
travel from the depot and after serving all vertices 
(nodes), return to the depot (except in an open 
VRP). There are different types of a VRP 
according to different types of real-world 
applications. 

There are several assumptions in formulating 
VRP. Some considered assumptions in this study 
are include: a capacitated VRP considering the 
load on each route does not exceed the capacity of 
a vehicle. A multi-commodity VRP that is 
considering different types of products transported 
on each route. A heterogeneous or homogeneous 
fleet considers different types or capacity for 
vehicles. Also, a multi or single-depot VRP is one 
of the critical assumption. 

One of the most regular objective functions is to 
minimize the cost. For instance, the cost of fuel 
consumption with respect to the distance between 
each node is considered in a few papers. It is one 
of the most important issues in the company to 
save the fuel cost in transportation. Some papers 
discussed about the effect of distance travel on the 
fuel consumption, [Kara, Kara and Yetis, 2007] 
proposed a capacitated VRP with a new cost 
function based on the distance and the load of a 
vehicle. The empirical analysis of [Sahin et al, 
2009] discussed for the truck with the capacity of 
20 tons, when the fuel cost for 1000 km traveled 
included 60% of the total cost. Therefore, it is 
important to reduce the fuel consumption at the 
operational level. Hence, the travel distance is one 
of the critical factors effecting on the fuel 
consumption when it is considered the full loaded 
vehicle capacity.   

Also, one of the problems dealing with the VRP 
is inventory decision. The inventory-routing 
problem (IRP) is regarded as a medium-term 
problem; however, the VRP is a short-term 
problem [Moin and Salhi, 2007]. The first study on 
the IRP was introduced by [Golden, Assad and 
Dahl, 1984] to identify a routing problem take into 
account the inventory assumptions. One of the 
critical issue is to integrate inventory management 
with a routing decision. As recent studies on this 
problem [Yu, Chen and Chu, 2008] proposed a 
model with split delivery and homogeneous fleet. 
They used a Lagrangian relaxation method that is 

decomposed in two sub-problems; inventory and 
routing problems in order to solve the large-scale 
problem. [Raa and Aghezzaf, 2009] proposed an 
integrated model of inventory management and 
vehicle route with a fleet size in a practical case in 
the context of vendor-managed inventory (VMI) 
with a cyclic approach. The aim is to minimize the 
average distribution and inventory cost. [Coelho, 
Cordeau and Laporte 2012] proposed and IRP 
model with a more practical case in the context of 
VMI. They assumed that products could be 
transshipped from a supplier to a customer and a 
customer to another customer. [Li et al, 2014] 
investigated a novel model for the IRP for a 
gasoline distribution industry, which minimizes 
travel time. They provided tabu search and an 
adapted US algorithm as a part of a solution 
procedure to obtain a better solution. 

In the last two decades, the applications of this 
problem under uncertainty have increased in both 
practitioners and researchers area. This uncertainty 
existed in the board spectrum of the theories that 
include stochastic, fuzzy and robust uncertainty. 

Fuzzy uncertainty is associated with the 
ambiguity of linguistic statements. These 
ambiguous situations may occur in objectives or in 
the parameters. It is often happening in parameters, 
such as demand and time windows. [Cheng, Gen 
and Tozawa 1995] proposed a VRP model with 
time windows and considered due-time instead of 
fixed time windows. Their fuzzy membership 
function shows the degree of customer satisfaction 
of the service time. [Wang and Wen, 2002] 
investigated a VRP model for a Chinese postman 
problem and considered fuzzy time windows. 
[Tang et al, 2009] proposed bi-objective VRP 
model with fuzzy soft time windows and 
considered a linear and concave fuzzy 
membership. Their objective functions are to 
minimize the routing cost and maximize the 
overall customer satisfaction level. [Ghannadpour 
et al, 2014] proposed a multi-objective dynamic 
VRP with fuzzy time windows. The objective 
functions are to minimize the total travel distance 
and waiting time on vehicles and maximize 
customer preferences for service. They proposed a 
genetic algorithm with three basic modules to 
solve this problem. 

Other studies have considered demand and 
travel time as fuzzy parameters. [Gupta, Singh and 
Pandey, 2010] solved a multi-objective VRP with 
fuzzy time windows. The objective functions are to 
minimize the fleet size, maximize the average 



209 

grade of satisfaction, minimize the total travel 
distance, and minimize the total waiting time for 
vehicles. [Cao and Lai, 2010] proposed an open 
vehicle routing problem (OVRP) model. They 
considered fuzzy demands and used a fuzzy 
chance-constrained programing model based on a 
fuzzy credibility theory to solve this model. 

Some papers have considered travel time as 
fuzzy parameters. [Kuo, Chiu and Lin, 2004] 
proposed a VRP model with time windows and 
fuzzy travel time. They used ant colony 
optimization (ACO) to solve this problem. [He and 
Xu, 2005] considered a single depot VRP with 
fuzzy demand and probability travel times between 
customers that minimizes travel time by 
considering capacity and arrival time constraints 
on the greatest degree. Because of the complexity 
of an uncertain VRP, they used a genetic algorithm 
to solve it. [Zheng and Liu, 2006] proposed a 
single-depot VRP model with time windows and 
considered travel time as fuzzy variables. They 
designed the integrated fuzzy simulation and 
genetic algorithm to solve this problem. [Xu, Yan 
and Li, 2011] proposed a bi-objective VRP model 
with soft time windows and fuzzy random 
environment. The objective functions are to 
minimize the total travel time and maximize the 
average satisfaction level of all customers. In order 
to obtain the equivalent crisp, the concept of the 
fuzzy random expected value is used. Some recent 
studies have considered a dynamic condition. 
[Ghannadpour, Noori and Tavakkoli-Moghaddam, 
2013] considered the customer satisfaction level by 
using the concept of fuzzy time windows with the 
previous assumptions. Also, the first objective 
function is to minimize the total traveling distance 
and waiting time on vehicles and the second one is 
to maximize the customer preference for service.    

Some recent studies have used the concept of 
robust optimization in a VRP model. This concept 
is used to compensate for the limitation of a 
stochastic approach for this problem, because this 
approach does not increase the complexity of the 
problem. [Montemanni et al, 2007] proposed a new 
extension for solving travel salesman problem by 
robust optimization. They applied a robust 
deviation criterion to improve optimization over an 
interval data problem. [Sungur, Ordónez and 
Dessouky, 2008] proposed a VRP model with 
demand uncertainty to introduce robust 
optimization to solve the problem. The aim is to 
minimize transportation costs with satisfying all 
demands. [Sungur et al, 2010] proposed an 

uncertain VRP model. They considered scenario-
based stochastic programming for uncertainty in 
customers and robust optimization for uncertainty 
in service times. [Li, Xu and Zhou, 2012] provided 
chance-constrained programming for a fuzzy 
demand in a VRP model. Also, they found the 
lowest total mileage in the model by using the 
improved tabu search algorithm. [Gounaris, 
Wiesemann and Floudas 2013] proposed 
capacitated VRP model with uncertain demand. 
They used robust optimization to solve the 
problem by developed robust rounded-capacity 
inequalities for two broad classes of the demand 
capacity. [Agra et al. 2013] proposed a VRP model 
with time windows and proposed a new 
formulation of a robust problem. The first 
formulation extends the well-known resource 
inequality formulation by considering adjustable 
robust optimization and the second approach 
formulation generalizes a path inequalities 
formulation for the uncertain context. [Solano-
Charris, Prins and Santos, 2014] considered a 
robust VRP with uncertain travel time with 
discrete scenarios. The objective function is to 
minimize the worst total cost in each scenario. 
They used a genetic algorithm to solve this 
problem for small and medium-sized problems. 
[Sun and Wang, 2015] proposed a VRP model 
with uncertainty in the demand and transportation 
cost. They used robust optimization considered 
situations possibly related to bidding and capital 
budgets to solve the problem. 

To summarize the contribution of this paper, a 
bi-objective capacitated VRP with uncertainty 
(UCVRP) is presented. Also, an assumption of 
multi-product and heterogeneous vehicles (with 
different capacity) is considered. The fuzzy 
objective functions are considered that minimize 
the traditional cost by considering the fuel 
consumption cost due to the traveled distance for 
fully loaded vehicles as the first objective. 
According to the constraints of inventory 
management in the model, the second objective is 
to minimize the shortage of products (i.e., negative 
inventory). Two types of uncertain parameters 
(e.g., demand of retailers and volume of products) 
are considered in the model. The uncertainty in the 
demand of retailers is due to the linguistic 
ambiguity of people, so it is expressed as fuzzy 
parameter. Also, the uncertainty in the volume of 
products is expressed as robust parameter, because 
the level of uncertainty of the volume of products 
belongs to the small bound without knowing 
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possible value.  As a result, a new model is 
proposed by considering two uncertainty 
approaches and fuzzy objective functions in this 
study. 

The rest of this paper is organized as follows. 
Classifying and reviewing the literature in Section 
1. In Section 2 introduces the deterministic 
formulation of the model. Section 3 presents a 
fuzzy approach used in the objective functions and 
demand parameter and then rewrites fuzzy 
formulation of the model. Section 4 presents a 
robust optimization approach for an uncertain 
volume of products and rewrites the final form of 
the model. Numerical results and sensitive analysis 
are provided in Section 5, and we conclude this 
study in Section 6. 
 
2. Problem Statement 
In this paper, we consider the bi-objective multi-
product VRP with heterogeneous fleet and 
retailer’s inventory assumption. We assume that 
the vehicles are driving the same speed with full 
load on each tour. Additionally, we consider an 
uncertain demand for retailers, volume of products 
and objective functions. Additionally, the aim of 
this model is to minimize the total cost and 
shortage of products (i.e., negative inventory) with 
fuzzy objectives. The total cost consists of used 
vehicle, fuel consumption and shortage cost as lack 
of inventory in each demand point. It is notable 
that the cost of fuel consumption is calculated with 
respect to the travel distance, because the speed of 
full loaded vehicles are considered the same on 

each route. 
 

2.1 Assumptions 
The main assumptions of the present model are 
listed below. 
 Considering the capacitated vehicle routing 

problem (CVRP). 
 Considering different types of products. 
 Considering a vehicle with the different 

capacity (i.e., heterogeneous fleet). 
 Considering an inventory policy. 
 Considering fuel consumption as a part of cost 

function in the first objective. 
 Minimize the shortage of products as the 

second objective. 
 Demands of retailers are assumed to be in a 

fuzzy nature. 
 Volumes of products are assumed to be in a 

robust nature. 
 Considering the fuzzy objective functions. 
 
     Figure 1 provides an example of a mathematical 
model in order to illustrate this problem with the 
above assumptions. This sample problem is 
described for nine retailers, three full loaded 
vehicles with different capacity and same speed 
and three types of products. According to the 
described model, the tours constructed from a 
central depot to visit retailers are shown. Also, the 
vehicles which choose to carry the amount of three 
types of selected products are shown. 

 

 
Figure 1. Illustrative example of the given problem 
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2.2 Model Formulation 
Applied sets, indices, parameters and modeling variables are as follows:  
Sets 

 1,...,p P  Set of products 

 1,...,v V  Set of vehicles 

 1,...,c C  Set of retailers 

Parameters 
The amount of demand of retailer c for product p dempc 

Capacity of vehicle v capv 

Distance between retailer c and c ˆdcc 

Cost  of vehicle v cv 

Capacity of product p in central depot capp 

Volume of product p volp 

Amount of fuel consumption of vehicle v per unit distance and unit vehicle weight  vf 

 Density per each type of product p pk 

Price of fuel consumption per unit distance per unit vehicle weight  fuelc 
Cost of shortage (i.e., negative inventory)  for product p cp 

Fuzzy multi objective parameters 
,1 1
,2 2

zl zu

zl zu
 

Upper bound and lower bound  of right hand side of fuzzy constraints ,zll zuu 
Robust parameters ,v   

 M  
 

Decision variables 
Amount of products delivered to retailer c by vehicle v 0xpvc  
Amount of products when entering in retailer c by vehicle v 0upvc  
Amount of inventory levels of product p for retailer c invpc 

Amount of positive and negative inventories of product p for retailer c  
0

0

invppc
invnpc




 

If vehicle v is assumed to travel from retailer c to c   1
0




 

ˆvcc Otherwise 

If vehicle v is used 1
0




 

vehzv Otherwise 
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Robust variables 
, ,

, ,ˆ ˆ

y z ppvc v p
y z ppvcc pvcc   

Fuzzy variable  

The Auxiliary variable for linearization  ˆpvcc 

2.3 Mathematical model 

1 ˆ ˆˆ
fuelvehz Min c z c f d c invnv v v p pcvcc ccv V v V p Pc C c Cc C

            
   



 
(1) 

2z Min invnpcp P c C
  

 
 (2) 

s.t. 
1 ˆˆ vccv V c C

 
 

  c C, c>1   (3) 

ˆ ˆˆ ˆvcc vccc C c C
 

 
   v V,c C    (4) 

                 x cappvc pv V c C
 

 
 p P   (5) 

    vehvol x cap zp pvc v vp P c C
   

 
 v V   (6) 

( )ˆ ˆ ˆu u xpvc pvc pvc vcc    , , , , 1p P v V c c C c      (7) 

1 ˆu xpv pvcc C
 


 ,p P v V    (8) 

 ˆˆ
vehzvvccc C




  ,v V c C    (9) 

 
 (10) 

inv x dempc pvc pcv V
 


 ,p P c C    (11) 

inv invp invnpc pc pc   ,p P c C    (12) 

 0,1ˆvcc   ˆ,c c C   (13) 

 0,1vehzv   v V   (14) 

0xpvc   , ,p P v V c C     (15) 

0upvc   , ,p P v V c C     (16) 

, 0invp invnpc pc   ,p P v V    (17) 

invpc free  ,p P c C    (18) 

v V,c C  
ˆ

x M dempvc pcp P c C
  

 
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     As mentioned before, this paper aims at 
minimizing the cost of purchasing the vehicle, fuel 
consumption and shortage as the first objective 
function and minimizing the shortage of products 
(i.e., negative inventory) as the second objective 
function. Both of them are shown as the first and 
second equations. The first constraint as shown in 
Eq. (3) ensures that each retailer stands on just one 
route. Eq. (4) guarantees whether vehicle v enter in 
node c, it should leave this node. Eq. (5) ensures 
that the amount of delivering product type p does 
not exceed its capacity. Eq. (6) is the capacity of a 
vehicle constraint. Eqs. (7) and (8) are sub-tour 
elimination constraints based on the amount of 
products when entering in nodes and ensure that no 
route is apart from a central depot. Eq. (9) ensures 
that each vehicle is assigned to one route. Eq. (10) 
states that product type p is delivered to retailer c 
by vehicle v, if vehicle v is allocated the route of 
retailer c. Eqs. (11) and (12) are the inventory 
constraints stating that the amount of delivered 
products to a retailer (i.e., inventory level) is the 
difference between load delivering to retailers and 
the demand for them. On the other hand, it is the 
difference between the inventory level of retailer 
and the shortage of products in one period.    
 
2.4 Linearization Step 
Due to the non-linear term appeared in the 
aforementioned mathematical model, a 
linearization procedure for Eq. (7) is applied as 
follows: 

(1 )ˆ ˆ ˆu u x bigmpvc pvc pvc vcc                     (19) 

 , , , 1p v c c    
 

3. Fuzzy Mathematical Programming   
     The proposed model for the VRP presented in 
the preceding section is a deterministic model. The 
fuzzy multi-objective mixed-integer linear 
programming (FMOMILP) is provided in this 
section to overcome the rigidity of the 
deterministic model. The mathematical model in 
the fuzzy environment can be included vague goal 
and parameters. 
     In the deterministic formulation, the total cost 
consists of the cost of the vehicle, cost of fuel 
consumption and penalty cost for shortage of 
products (i.e., negative inventory). In the real 
world, most of these costs are not easily measured, 
because human perception is effected in this 
evaluation. When we face with this issue, the 
decision maker wants to reach some aspiration 

levels of the objective functions and allow some 
violations in the parameters of constraints. In 
addition, the fuzzy objective functions, the demand 
is considered as fuzzy parameter represented by 
intervals of tolerance.  
     This paper uses a fuzzy approach of 
[Zimmermann, 1978] and other [Chen and Chou, 
1996] to deal with the imprecise parameters and 
fuzzy situation of objective functions. The linear 
membership functions are employed for constraints 
and objective functions. This approach is presented 
below.  
Max       (20) 
s.t.   

min ( )xzr   
Minimum objective 
function (21) 

max ( )xzs   Maximum objective 
function (22) 

( )xgl   Fuzzy constraint (23) 

g ( )x bp p  Deterministic 
constraint (24) 

 
In the above model,  

min ( ),zr x max ( )zs x and ( )gl x refer to a 
minimum objective, a maximum objective and 
fuzzy constraints, respectively. The 
membership functions based on preference are 
linear as shown below: 

1                        z

( )
( )   ( )min

0                        z     

uzr r
uz z x l ur rx z z x zr r ru lzr z zr r

lzr r




  













  (25) 

1                        z

( )
( )   ( )max

0                        z     

uzs s
lz x z l us sx z z x zs s sz u ls z zs s

lzs s




  













  (26) 

     With two membership functions for 
minimization and maximization objective 
functions, we can obtain an aspiration level for the 
value of the objective functions. 

1                         g ( )

( )
( )     b ( )

0                        ( )     

x bp p
g x bpx g x b dg p p p pp d p

g x b dp p p




   

 









  
(27) 
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states that product type p is delivered to retailer c 
by vehicle v, if vehicle v is allocated the route of 
retailer c. Eqs. (11) and (12) are the inventory 
constraints stating that the amount of delivered 
products to a retailer (i.e., inventory level) is the 
difference between load delivering to retailers and 
the demand for them. On the other hand, it is the 
difference between the inventory level of retailer 
and the shortage of products in one period.    
 
2.4 Linearization Step 
Due to the non-linear term appeared in the 
aforementioned mathematical model, a 
linearization procedure for Eq. (7) is applied as 
follows: 

(1 )ˆ ˆ ˆu u x bigmpvc pvc pvc vcc                     (19) 

 , , , 1p v c c    
 

3. Fuzzy Mathematical Programming   
     The proposed model for the VRP presented in 
the preceding section is a deterministic model. The 
fuzzy multi-objective mixed-integer linear 
programming (FMOMILP) is provided in this 
section to overcome the rigidity of the 
deterministic model. The mathematical model in 
the fuzzy environment can be included vague goal 
and parameters. 
     In the deterministic formulation, the total cost 
consists of the cost of the vehicle, cost of fuel 
consumption and penalty cost for shortage of 
products (i.e., negative inventory). In the real 
world, most of these costs are not easily measured, 
because human perception is effected in this 
evaluation. When we face with this issue, the 
decision maker wants to reach some aspiration 

levels of the objective functions and allow some 
violations in the parameters of constraints. In 
addition, the fuzzy objective functions, the demand 
is considered as fuzzy parameter represented by 
intervals of tolerance.  
     This paper uses a fuzzy approach of 
[Zimmermann, 1978] and other [Chen and Chou, 
1996] to deal with the imprecise parameters and 
fuzzy situation of objective functions. The linear 
membership functions are employed for constraints 
and objective functions. This approach is presented 
below.  
Max       (20) 
s.t.   

min ( )xzr   
Minimum objective 
function (21) 

max ( )xzs   Maximum objective 
function (22) 

( )xgl   Fuzzy constraint (23) 

g ( )x bp p  Deterministic 
constraint (24) 

 
In the above model,  

min ( ),zr x max ( )zs x and ( )gl x refer to a 
minimum objective, a maximum objective and 
fuzzy constraints, respectively. The 
membership functions based on preference are 
linear as shown below: 

1                        z

( )
( )   ( )min

0                        z     

uzr r
uz z x l ur rx z z x zr r ru lzr z zr r

lzr r




  













  (25) 

1                        z

( )
( )   ( )max

0                        z     

uzs s
lz x z l us sx z z x zs s sz u ls z zs s

lzs s




  













  (26) 

     With two membership functions for 
minimization and maximization objective 
functions, we can obtain an aspiration level for the 
value of the objective functions. 

1                         g ( )

( )
( )     b ( )

0                        ( )     

x bp p
g x bpx g x b dg p p p pp d p

g x b dp p p




   

 









  
(27) 
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     where the left hand side of the fuzzy 
constraints is ( )pg x , the p-th fuzzy value is 

b p
 and the tolerance level that the decision 

maker can consider in the p-th constraint of the 
fuzzy inequality is

pd .   
     According to the fuzzy objective functions 
and constraints, the MILP formulation can be 
expressed as follows: 
max    (28) 

1 1 1 1( )u l uz z z z      (29) 

2 2 2 2( )u l uz z z z      (30) 
( ) ( )u udem dem dem inv xpc pc pc pc pvcv V

     




 

,p c
 (31) 

( )ldem dem dem inv xpc pc pc pc pvcv V
      




 

,p c
 (32) 

Constraints (3)-(6), (14), (8)-(10), (12) and 
(13). 
0 1                                                            (33) 
 
     In order to obtain upper and lower bounds of 
two fuzzy objective functions, use the following 
procedure. In minimization goals, l

iz  can be 
obtained by solving each of single objective linear 

programming. Also, in minimization goals, u
iz  is 

the non-ideal solution (i.e., maximum value). After 
calculating of upper bound of each objective, if the 
upper bound is infinite, eliminated the basic 
constraint (e.g., sub-tour elimination) of the 
problem and calculated the upper bound of 
objective functions by minimizing them. 
 
4. Robust Mathematical Programing 
     Now, the robust counterpart problem for a 
fuzzy VRP is presented. The volume of each 
product type is the other parameter of this model, 
which is faced with uncertainty. It is better to use a 
bound uncertainty set of data to solve this model 
efficiently in an uncertain condition.  The 
expectation is that such a solution with a robust 
parameter will be efficient in this bound for every 
possible outcome. 
    According to the robust formulation [Bertsimas 
and Sim, 2004], the following constraint with 
uncertainty in parameter

pvol is considered, where 

pJ  is the set of coefficients for this parameter and 
takes the value according to a symmetric 

distribution with the mean that is equal to the 
nominal value 

pvol  in the 

interval ˆ ˆ,vol vol vol volp p p p
 
  

  . 

    vehvol x cap zp pvc v vp P c C
   

 
 (34) 

Parameter 
p  is introduced that takes a value in 

interval 0, p    for each p.  The role of 
p  is 

adjusted the robustness of the proposed method 
against the level of protection of the solution. The 
aim of this type of robustness is protected against 
that all cases up to 

p  
 change, and only one 

coefficient ( ˆ pvol ) is changed by   ˆp p pvol     . 

The obtained robust solution is feasible 
deterministically, even if more than one 

p  
 

change, the robust solution will be feasible with 
very high probability. The formulation is shown 
below: 
max  c x   (35) 
s.t.  

 

 

max
| , , \

ˆ ˆ

  

  
    

  
 

    

    
 

 

     

xp pvcp P c C

S t S J S t J Sp p p p p p p p p

vol y vol yp pvc p p p pvcp P c C
vehcap zv v

vol

 

,v c                      (36) 
y x ypvc pvc pvc     (37) 

0 , 0x y    (38) 
     The value of the second part of the left hand 
side of Constraint (36) can be computed for each 
vehicle v and retailer c. Also, by 
considering 0,p pJ    , the robustness of the 

model against the level of protection is more 
flexible than Jp p  . 

     This model is equal to the objective function of 
the linear model as shown below: 

* *ˆ( , ) max( )x vol x zp pvc vi i p P c C
   

 
  (39) 

v p
v V

z


   p  (40) 

0 1vz    (41) 
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problem and calculated the upper bound of 
objective functions by minimizing them. 
 
4. Robust Mathematical Programing 
     Now, the robust counterpart problem for a 
fuzzy VRP is presented. The volume of each 
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which is faced with uncertainty. It is better to use a 
bound uncertainty set of data to solve this model 
efficiently in an uncertain condition.  The 
expectation is that such a solution with a robust 
parameter will be efficient in this bound for every 
possible outcome. 
    According to the robust formulation [Bertsimas 
and Sim, 2004], the following constraint with 
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pvol is considered, where 

pJ  is the set of coefficients for this parameter and 
takes the value according to a symmetric 

distribution with the mean that is equal to the 
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aim of this type of robustness is protected against 
that all cases up to 
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 change, and only one 
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The obtained robust solution is feasible 
deterministically, even if more than one 
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change, the robust solution will be feasible with 
very high probability. The formulation is shown 
below: 
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     The value of the second part of the left hand 
side of Constraint (36) can be computed for each 
vehicle v and retailer c. Also, by 
considering 0,p pJ    , the robustness of the 

model against the level of protection is more 
flexible than Jp p  . 

     This model is equal to the objective function of 
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* *ˆ( , ) max( )x vol x zp pvc vi i p P c C
   

 
  (39) 

v p
v V

z


   p  (40) 

0 1vz    (41) 
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With regards to the final form of the model 
introduced by [Bertsimas and Sim 2004], the new 
form of model is rewritten, which is established 
based on the dual of the model. 
First, the dual of the model is considered below: 
min     p zp v vp P




  (42) 

ˆz p vol yv p p pvcc C
   


 ,c v  (43) 

0vz   v  (44) 

0pp   
 

p  (45) 

The objective value is obtained from the dual 
problem is feasible and bounded for 
all 0,p pJ    . 
 
     Now, the first model by considering the fuzzy 
objectives and fuzzy demands as well as a robust 
volume of products in constraints is rewritten. 

max    (46) 
s.t.   
Normal constraints   

1 ˆˆ vccv V c C
 

 
  c C, c>1   (47) 

ˆ ˆˆ ˆvcc vccc C c C
 

 
   v V,c C    (48) 

 x cappvc pv V c C
 

 
 p P   (49) 

(1 )ˆ ˆ ˆu u x bigmpvc pvc pvc vcc      , , , 1p v c c   (50) 

1 ˆu xpv pvcc C
 


 ,p P v V    (51) 

 ˆˆ
vehzvvccc C




  ,v V c C    (52) 

ˆ
ˆ

                 pvc vcc
p P c C

x M 
 

  
 

v V,c C    (53) 

inv invp invnpc pc pc   

 
,p P c C    (54) 

Fuzzy constraints for objective function   

1 1 1 1( )u l uz z z z      (55) 

2 2 2 2( )u l uz z z z     
 

 (56) 

Fuzzy constraints for demand   
( ) ( )u udem dem dem inv xpc pc pc pc pvcv V

     


  ,p P c C    (57) 

( )ldem dem dem inv xpc pc pc pc pvcv V
      


  ,p P c C    (58) 

  
Robust constraints for volume of product   

veh vehvol x z p cap zp pvc v v p v vp P p Pc C
       

 
 

v V   (59) 

ˆz p vol yv p p pvcc C
   


 ,p P v V    (60) 

x ypvc pvc  , ,p P v V c C     (61) 
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x ypvc pvc   , ,p P v V c C     (62) 

0 1    (63) 
0 , 0x y    (64) 
0vz  , 0pp  , 0pvcx  , 0pvcu  , 0pcinvp  , 0pcinvn   (65) 

{0,1},  {0,1}ˆ
vehzvvcc    

 
(66) 

5. Extension of the Model with Decreasing 
the Load on Each Route 

     Changing in the load of the vehicle has a direct 
impact on fuel consumption. After delivery of 
products with large sizes (in the weight), the 
amount of fuel consumption has decreased. 
However, in the medium and small sizes (in the 
weight) of the delivery process, the decreasing in 
the fuel consumption is very low. So, the amount 

of fuel consumption can be considered fixed.  
In this section, the extension of the model is 
considered for assessing the effect of the load 
decreasing for delivered products in large sizes on 
the vehicle fuel consumption. First, the 
deterministic form of the model is described as 
follows. 
Put ˆ ˆupvcpvcc vcc   then 

 
  +1 ˆ ˆˆ

                  

fuelvehz Min c z c f vol k dv v v p p pvcc ccv V p P v V c C c C
c invnp pcp P c C

          
    
  

 


 (67) 

s.t.   
ˆ(1 )ˆ u M vccpvcpvcc      ˆ, , ,p P v V c c C     (68) 

ˆ(1 )ˆ u M vccpvcpvcc     ˆ, , ,p P v V c c C     (69) 

ˆ ˆpvcc M vcc   ˆ, , ,p P v V c c C     (70) 

ˆ 0pvcc    (71) 
Constraints (2)-(18)    (72) 
 
In the Eq. (67) minimize the cost objective 
function includes the cost of purchasing the 
vehicle, fuel consumption cost with considering 
the effect decreasing the load on fuel consumption 
of a vehicle. Eqs. (68) - (71) are the linearization 
procedure for cost of fuel consumption term in the 
first objective function. 
     Because the uncertainty in the volume of 

products is considered as robust parameter, it is 
needed to consider the robust formulation for this 
parameter in the objective function. Since the 
generating the robust model based on deterministic 
model is described before, in this section the 
relations are just represented.  The new model with 
fuzzy and robust parameters is shown bellow. 

 
Put ˆ ˆ

fuelc f k dpv ppvcc ccA vol      then 

 

  +  1
vehz Min c z c invnv v p pcv V p P c C

     
  

  (73) 

ˆ ˆpvcc pvccA     ˆ, , ,p P v V c c C     (74) 
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ˆ 0pvcc     (75) 

Constraints (68)-(72)   (76) 
 
As described before, the robust model in Eq. 
(74) for mentioning robust factor is shown 
below. 

 
 

 
*ˆ  z  ˆ ˆ ˆˆ

Max a pvcc pvcc pvccp P v V c Cc C
    

  
  (77) 

s.t.  (78) 

ˆˆ
zpvccp P v V c Cc C
     

  
  (79) 

0 1ˆz pvcc    (80) 

 
The dual of the above model is considered below: 

   ˆˆ
Min p zpvccp P v V c Cc C

       
  

 (81) 

*ˆˆ ˆ ˆz p apvcc pvcc pvcc      ˆ, , ,p P v V c c C     (82) 

0ˆppvcc   ˆ, , ,p P v V c c C     (83) 

0z    (84) 
 
Now, the final form of the new model considering the fuzzy and robust constraints of original model is 
shown below. 
  (85) 

ˆ ˆ ˆˆ ˆ
a z ppvcc pvcc pvccp P v V p P v Vc C c Cc C c C

             
     

    (86) 

ˆ ˆ ˆz p a ypvcc pvcc pvcc      ˆ, , ,p P v V c c C     (87) 

ˆ ˆ ˆpvcc pvcc pvccy y    ˆ, , ,p P v V c c C     (88) 

,  ,  z 0ˆ ˆppvcc pvcc     (89) 

Constraints (47)-(66)  (90) 
 
6. Computational Results 
     In the previous section, the given problem was 
described in details. In this section, the numerical 
results of the deterministic, fuzzy, robust and 
fuzzy-robust model with Equations (1)-(66) are 
presented. The results is obtained by solving some 
instances via general algebraic modelling system 
(GAMS) 24.1.2/CPLEX. It is essential to create 
random intelligent various sample problems in 
order to evaluate the mathematical model. For 
nominal experiments, eight sample problems with 
small and medium sizes are shown in Tables 2 and 

3. The sample data are chosen from a uniform 
bound as shown in Table 1. It is notable that the 
cost of the three parameters in first objective 

function (e.g., pc , vc  and fuelc ) should be in the 
same scale. The cost scaled of fuel consumption is 
different from the cost of the vehicle and shortage. 
It causes to ignore the effect of fuel consumption 
cost. In order to overcome this issue, each 
parameter is normalized than the range of its data. 
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Table 1. Source of random generations for sample problems 
 

Parameters Corresponding random 
distribution Parameters Corresponding random distribution 

dempc
 Uniform (0,31) capp

 Uniform (200000,300000) 
capv

 Uniform (200000,300000) volp
 Uniform (5,15) 

ˆdcc
 Euclidean distance vf  Uniform (5,15) 

vc  Uniform (250000,300000) pk  Uniform (1,10) 

pc  Uniform (250000,300000)   

 
     According to the discrete and continuous 
variables, the proposed model is a mixed-integer 
linear model. In order to validate the model and 
examined the result of the sample problems for 
fuzzy, robust, fuzzy-robust and deterministic 
models, used GAMS software. In Table 2, 
dimensions and characteristics of small-sized 
instances with the result of the deterministic and 

fuzzy-robust model is shown. 
     As presented in Table 2, the total cost of the 
sample problem included, the cost of using 
vehicles, fuel consumption and shortage of 
products for each retailer is between 31995000 and 
43820000 in deterministic form. Also, shortage of 
products as the second objective is between 70 and 
107. 

 
Table 2. Small-scale instances: Results for the deterministic and fuzzy-robust model 

 
Problem 

name Indices Deterministic Fuzzy-robust 

  Obj1 Obj2 Obj1 Obj2 
S01 (p)4-(c)5-(v)4 31995000 70 17628000 21.59 
S02 (p)4-(c)6-(v)4 42666000 107 28821000 58.03 
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with a medium size are created and optimized. The 
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Table 1. Source of random generations for sample problems 
 

Parameters Corresponding random 
distribution Parameters Corresponding random distribution 

dempc
 Uniform (0,31) capp

 Uniform (200000,300000) 
capv

 Uniform (200000,300000) volp
 Uniform (5,15) 

ˆdcc
 Euclidean distance vf  Uniform (5,15) 

vc  Uniform (250000,300000) pk  Uniform (1,10) 

pc  Uniform (250000,300000)   
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Figure 2. Optimum objective function for small-sized instances in comparison with fuzzy optimum results 
 
     The results of the fuzzy and robust models for 
small instances are shown in Figures 2 and 3, 
separately. As characteristic of a fuzzy set theory, 
the solution of the fuzzy model is more stable than 
the deterministic form and shows the better insight 
into the model structure. So, the fuzzy results 
better than deterministic. Also, the result of the 
robust optimization model is better than the 
deterministic model, because this robust approach 
[Bertsimas and Sim 2004] guaranteed that 
constraints are satisfied by changing data. Also, 
these results are the same for medium sizes.  
The results of comparison fuzzy-robust model with 
other medium sample problems are shown in 
Figure 4. It is obvious that the result of both 
objective functions of the fuzzy-robust model are 

the best optimization value than the other ones. 
    If the uncertainty of parameters is known by the 
most possible value of them, it is efficient to use a 
fuzzy optimization approach. If the uncertainty of 
parameters is unknown and only a small violation 
of them is known, it is efficient to use a robust 
optimization approach. The most appropriate 
solution is achieved with these aggregation of 
approaches for an uncertain model. 
    In order to evaluate the flexibility of the 
presented model, we use a sensitive analysis 
procedure in different conditions and measure the 
flexibility of the model. Therefore, various 
scenarios for robust model and fuzzy model are 
defined and implementing sensitivity analysis 
procedures.  

 

 
 

Figure 3. Optimum objective function for small-sized instances in comparison with the robust optimum results 
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Figure 4. Optimum objective function for medium-sized instances in comparison with fuzzy optimum and robust 
optimum results 

 
     In order to demonstrate the conflict between 
objective functions, we show the Pareto optimal 
solution. The augmented ε-constraint method is 
used to achieve this goal. Table 4 illustrates the 
ideal (ZI) and nadir (ZN) points for objective 
functions. Also, the diagram of a Pareto front is 
shown in Figure 5. 
 

Table 4. Upper and lower bound 
Ideal and 

Nadir points 
Objective 1 

(Cost) 
Objective 2 
(Shortage) 

Upper bound ZN= 25200000 ZN=64 
Lower bound ZI= 23880000 ZI=56 

   
 
 

     According to the non-dominated solution shown 
in Figure 5, the first two points of the Pareto front 
have the same value of the cost objective function, 
while the shortage of products objective function 
are different. Also, the two other points are the 
same condition. Conflict among objective 
functions is not only clear in the Pareto frontier 
objective, but also is obvious in the model 
logically. According to the second objective 
function, if an unlimited amount of negative 
inventory for the second objective function is 
allowed, the number of delivered products by each 
vehicle (Constraints 11 and 12) is reduced. Also, 
the number of used vehicles and vehicle trips 
(Constraints 6 and 10) are reduced. So, the value of 
the cost objective function is reduced. 

  
Figure 5. Pareto front 
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6.1 Analysis Based on the Uncertainty 
Level of the Demand 

The scenarios on reducing demand is considered 
and chosen sample problem S02 as an example. 
The result of reducing demand presented in Table 
5. 
Two analysis is made for reducing the demand. 
First, the total cost is constant or decreases and the 
shortage of products decreases too. It is due to the 
fact that the vehicle number is constant. As a 
result, the shortage of products decreases means 
while the cost is constant or decreases. Second, 
costs decrease a lot and the shortage of products 
increases, which means that deciding to use fewer 
vehicles due to the demand reduction. So, the 
amount of the remained facilities are not capable of 
supplying more shortage of products. 
    The results from the fuzzy model and robust-
fuzzy model are congruent with first expectation 
scenarios from the suggested model performance. 
When the reduction of demands is increasing, the 
reduction rate of the objective function of the 
fuzzy-robust model is more than the fuzzy model. 
It represents the best performance of the fuzzy-
robust model. These reduced rates for both models 

are shown in Figures 6 and 7. 
 
6.2 Analysis Based on a Protection Level 

for Robust Parameters 
     It is acceptable to estimate the change in the 
objective functions with respect to the change in 
protection level 

i  of constraint i measure the 
validation of the robust optimization model. 
Hence, the price of increasing or decreasing a 
change is evaluated at the protection level for each 
constraint by the results of the objective functions 
in the robust model. Also, the results of the fuzzy-
robust optimization model is obtained for each 
level of protection. Moreover, the probability 
bounds of constraint violation is obtained 
[Bertsimas and Sim 2004]. In other words, if more 
than the 

i    uncertain parameters of the right 
hand side of i-th constraint change, the probability 
of a violation of i-th constraint is at most these 
bounds. The result of change 

i  on objective 
functions and probability bound of constraints for 
the robust and fuzzy-robust models are shown in 
Table 6.  

 
Table 5. Scenarios designed for the sensitivity analysis procedure on demand 

 
Scenario Amount of demand Fuzzy Fuzzy-robust 
  Obj1 (Cost) Obj2 (Shortage) Obj1 (Cost) Obj2 (Shortage) 
1 0.95×Demand  25401000 48.627 22304000 33.948 
2 0.9×Demand  21093000 33.390 20939000 30.345 
3 0.85×Demand  17536000 20.133 16443000 17.626 
4 0.8×Demand  14919000 9.220 13471000 6.332 
5 0.75×Demand  12340000 1.673 12131000 0.789 
6 0.7×Demand  11721000 0.087 11767000 0.249 
     
 

  
  

Figure 6. Reduced rate of the second objective 
function for both models in each scenario 
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In the robust optimization model, the objective 
functions are increasing the protection level; 
however, the trend of the objective functions in the 
fuzzy-robust model is not distinct. It is obvious 
that the optimal value of the objective functions in 
both models is affected when the protection level is 
increased. For example, in order to have a 
probability guarantee of a constraint violation at 
most 15.74%, it needs to reduce the first objective 
function of the robust model, 69%, while the 
reduction level for the fuzzy-robust model is 41%.  
     The effect of the protection level on an optimal 
value of the first objective function for the robust 
and fuzzy-robust models are shown in Figure 8. 
The results illustrate the better performance of the 

fuzzy-robust model for each level of protection. 
Also, Figure 9 illustrates the optimal value of the 
first objective function with respect to the 
probability bound of constraint violation. 
 
6.3 Comparison Between Results of 

Original and Extension Models 
In order to show the effect of decreasing of vehicle 
load (for the model presented in Section 5), the 
result of the deterministic model described for 
small-sized instances are shown in Table 7. Also, 
the result of the fuzzy-robust model is shown in 
Table 7 to show the effect of the robust parameter 
in the objective function. 

 
Table 6. Results of the robust and fuzzy-robust solutions for   

 

  Probability bound Robust Fuzzy-robust 

  Obj1 Obj2 Obj1 Obj2 
2 0.4114 41229000 102 28821210 58.030 

3.2 0.3221 43132080 110 29953354 63.000 
4.6 0.2275 44064589 112 29835145 63.171 
5.8 0.1574 44071122 112 29996842 64.423 
7 0.1097 44071185 112 29886269 64.765 

8.2 0.0634 44071203 112 30862130 65.049 
9.4 0.0371 44071236 112 30123720 65.049 

10.8 0.0157 44071457 112 29869341 63.797 
12 0.0113 44071642 112 30972286 64.655 

13.2 0.0065 44079450 112 29953354 65.049 
14.4 0.0028 44079592 112 30088715 65.675 
15 0.0020 44079754 112 30290140 65.545 

    

 
 

Figure 7. Optimal value of the robust and fuzzy-robust models as function of   
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Figure 8. Optimal value of the robust and fuzzy-robust models as a function of the probability bound of the constraint 

 
 

Table 7. Comparision between the models for small-sized instances 

Problem  Original model Extension model 
Deterministic Fuzzy-robust Deterministic Fuzzy-robust 

 Obj1 Obj2 Obj1 Obj2 
S01 31995000 70 17628000 21.59 37847500 246 23942000 34.82 
S02 42666000 107 28821000 58.03 47511100 112 31642000 61.94 
S03 43820000 101 27230000 44.3 45820800 238 29840000 51.38 
S04 38443000 75 21710000 13.11 46465200 201 20432000 45.67 

 
     According to the results of Table 7, both 
objective functions considering load is worse than 
the original model for a deterministic form. In the 
fuzzy-robust model, adding the robust parameter to 
the objective function is changed without any 
specific behavior in both objective functions. 
 
7. Conclusion 
     In this study, we proposed a novel bi-objective 
capacitated vehicle routing problem under 
uncertainty (UCVRP) and considered the multi-
products with heterogeneous fully loaded vehicles 
(i.e., different capacity) assumptions.  The first 
objective function minimizes the cost of the used 
vehicles, fuel consumption and shortage of 
products for each retailer. The second objective 
minimizes the shortage of products. The inventory 
constraints are considered in the model to obtain 
the shortage of products. We considered 
uncertainty in some parameters included the 
demand of retailers and volume of products. We 
utilized fuzzy optimization and robust optimization 
approaches separately to cope with the uncertain 

parameters and objective functions. In order to 
overcome the ambiguous of linguistic for demand 
of retailers and most possible amount of known 
demands in the real world, considered a fuzzy 
optimization model. Also, the uncertainty in the 
volume of products belongs to the bounded 
uncertainty set in the real world. Therefore, we 
considered a robust optimization model. Finally, an 
integrated model (i.e., fuzzy-robust model) 
presented to deal with both uncertainty parameters. 
Additionally, we coped with fuzzy uncertainty in 
the bi-objective mixed-integer linear problem. The 
augmented ε-constraint method is used to 
demonstrate the conflict between objective 
functions. Also, an extension of model considering 
the effect of load of fuel consumption is presented. 
Some sample problems are generated and solved to 
demonstrate the efficiency of the fuzzy-robust 
model. Finally, we proposed a sensitivity analysis 
based on a reducing demand for the fuzzy and 
fuzzy-robust model and increasing protection level 
for the robust and fuzzy-robust model. The results 
showed the efficiency of the integrated model. 
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Future studies can be considered a model for a 
multi-depot VRP or multi-period condition. Also, 
one can be provided an efficient algorithm to solve 
given large scale problem.  
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