Predicting Dynamic Origin-Destination Matrix by Time Series Pattern Recognition

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran

2 Associate Professor, Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran

Abstract

Dynamic Origin Destination (OD) matrix estimation is a classic problem that has long been a subject of scholarly investigation. OD estimation is an essential prerequisite for transportation planning and traffic management. Despite the plethora of research on this subject, most models available in the literature fail to present the elegant characteristics of OD time series data. The patterns in OD time series break down into regular and particular patterns. However, most studies in literature focused on the regular type.  Broadly the regular patterns are used to represent the general distribution patterns in time-dependent OD demands. Although, uncontrollable variables such as weather conditions, events, time, and crashes affect the OD patterns considerably. So, considering the impact of these uncontrolled variables, we developed a time series prediction algorithm model that can show both regular and particular patterns. The proposed model classifies historical data and estimates the class of coming demand. The clustering and association rule techniques are used in the proposed model to predict the coming OD. The bike riding data in Chicago was used to test the algorithm and the results suggest that the model can predict the class of OD with above 80% accuracy with a reasonable number of classes.

Keywords


Alibabai, H., Mahmassani, H.S., (2009) “Dynamic origin-destination demand estimation using turning movement counts”, Transport. Res. Rec.: J. Transport. Res. Board 2085 (1), 39–48.
 
Antoniou, C., Ben-Akiva, M., Koutsopoulos, H.N., (2006) “Dynamic traffic demand prediction using conventional and emerging data sources” In: IEE Proce.-Intell. Transp. Syst., vol. 153. IET, pp. 97–104.
 
Bachir, L., Khodabandelou, Gauthier, El Yacoubi, Puchinger, (2019), “Inferring dynamic origin-destination flows by transport mode using mobile phone data”. Transportation Research Part C: Emerging Technologies, Volume 101, Pages 254-275.
 
Barceló, J., Montero, L., Marqués, L., Carmona, C., (2010). “Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring” Transport. Res. Record: J. Transport. Res. Board (2175), 19–27.
 
Calabrese, F., Di Lorenzo, G., Liu, L., Ratti, C., (2011). “Estimating origin-destination flows using mobile phone location data”. IEEE Pervasive Computing 10 (4), 0036–44.
 
Cao, Y., Tang, K., Sun, J., Ji, Y., (2021).”Day-to-day dynamic origin–destination flow estimation using connected vehicle trajectories and automatic vehicle identification data”. Transportation Research Part C: Emerging Technologies Volume 129, 103241
 
Castillo, E., Menéndez, J.M., Jimenez, P., (2008) b. “Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations”. Transport. Res. Part B: Methodol. 42, 455–481.
 
Castillo, E., Menéndez, J.M., Sánchez-Cambronero, S., (2008) a. “Traffic estimation and optimal counting location without path enumeration using Bayesian networks.” Computer-Aided Civil Infrastruct. Eng. 23 (3), 189–207.
 
Castillo, E., Menéndez, J.M., Sánchez-Cambronero, S., (2014). “A hierarchical optimization problem: estimating traffic flow using gamma random variables in a Bayesian context”. Comput. Operation Res. 41, 240–251.
 
Ganin, A. A., Mersky, A. C., Jin, A. S., Kitsak, M., Keisler, J. M., & Linkov, I. (2019). "Resilience in intelligent transportation systems (ITS). Transportation", Research Part C: Emerging Technologies, 100, pp. 318-329.
 
Gardner, E. S., (2006). “Exponential smoothing: The state of the art” — Part II. International Journal of Forecasting, 22(4), 637–666.
 
Gonzalez-Calderon, A., JairoPosada-Henao, SusanaRestrepo, (2020). “Temporal origin–destination matrix estimation of passenger car trips. Case study: Medellin, Colombia”. Case Studies on Transport Policy Volume 8, Issue 3, 1109-1115.
 
Hamedmoghadama, H., Hai L. Vu, Jalili, M., Saberi, M., Stone, L., Hoogendoorn, S. (2021). “Automated extraction of origin-destination demand for public transportation from smartcard data with pattern recognition” Transportation Research Part C: Emerging Technologies Vol. 129, 103210.
Hänseler, Flurin S., Nicholas A. Molyneaux, and Michel Bierlairea, (2017), “Estimation of Pedestrian Origin-Destination Demand in Train Stations”, Transportation Science, 51.3 ,981–97.
 
Hasanpour S.O, Ahmadi A, Karimi B, Akbarpour M. (2012). “Hierarchical Data clustering Model for Analyzing Passengers Trip in Highway”. International Journal of Industrial Engineering & Production Research. 23(4), 253-259.
 
Hazelton, M.L., (2008). “Statistical inference for time varying origin-destination matrices” Transport. Res. B: Methodol. 42 (6), 542–552.
 
Hidayat, A., Tarebo, S., Yaginuma, H., (2020). “Bus Passenger Volume and Origin-Destination Based on Field Surveys Using a Wi-Fi Scanner” Transportation Research Procedia, Volume 48, Pages 1376-1389.
 
Iqbal, M.S., Choudhury, C.F., Wang, P., González, M.C., (2014). “Development of origin-destination matrices using mobile phone call data”. Transport. Res. C: Emerg. Technol. 40, 63–74.
 
Karimi, H., Shetab Boushehri, Nasiri, (2020). “Origin-Destination Matrix Estimation Using SocioEconomic Information and Traffic Counts on Uncongested Networks”, International Journal of Transportation Engineering, Vol. 8/ No.2/ (30)
 
Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petkovic, D., Hashimd, R., (2015) “A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm”, Appl. Math. Comput. 270 731–743.
 
Kuusinen, Juha Matti, Janne Sorsa, and Marja Liisa Siikonen, (2015) “The Elevator Trip Origin-Destination Matrix Estimation Problem”, Transportation Science, 49.3, 559–76.
 
Lam, W., Shao, H., Cao, S., Yang, H., (2021). “Origin–Destination Demand Estimation Models”. International Encyclopedia of Transportation 2021, Pages 515-518.
 
Lee, J.-G., Han, J., Whang, K.-Y, (2007). “Trajectory clustering: a partition-and-group framework”. In Proc. Of the 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD'07).
 
Lei, D., Chen, X., Cheng, L., zhang, L., Wang, P., Wang, K., (2021). “Minimum entropy rate-improved trip-chain method for origin–destination estimation using smart card data”. Transportation Research Part C: Emerging Technologies Volume 130, 103307
 
Lu, Z., Rao, W., Wu, Y., Guo, L., (2015). “A Kalman filter approach to dynamic OD flow estimation for urban road networks using multi-sensor data”. J. Adv. Transport. 49 (2), 210–227.
 
Makridakis, S., Spiliotis, E., Assimakopoulos, V., (2018),”Statistical and machine learning forecasting methods: Concerns and ways forward”, PLoS One 13 (3) e0194889.
 
Maldonado, Sebastián, Agustín González, and Sven Crone. (2019). “Automatic Time Series Analysis for Electric Load Forecasting via Support Vector Regression”. Applied Soft Computing 83: 105616.
 
Mohammadi, M., Dideban, A., Lesani, A., Moshiri, B. (2020). “An Implementation of the AI-based Traffic Flow Prediction in The Resilience Control Scheme.” International Journal of Transportation Engineering, Vol. 8/ No.2, pp. 185-198.
 
Mohanty, S., Puzdnukhov, A., (2020), “Dynamic Origin-Destination Demand Estimation from Link Counts, Cellular Data and Travel Time Data”. Transportation Research Procedia, Volume 48, 1722-1739.
 
Sherali, H., Park, T., (2001). “Estimation of dynamic origin-destination trip tables for a general network”. Transport. Res. Part B: Methodol. 35 (3), 217–235.
 
Torfehnejad, H., Jalali, A. (2018). "Traffic condition detection in freeway by using autocorrelation of density and flow”. International Journal of Transportation Engineering, Vol. 6, No. 1, pp 85-98.
 
Wei M., Zhen (Sean) Q., 2018. “Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data.” Transportation Research Part C 96, 96–121.
 
Wenming R, Yao-Jan W, Jingxin X, Jishun O, Robert K., (2018). “Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data.” Transportation Research Part C 95, 29–46.
 
Wu, L., Kang, J., Chung, Y., Nikolaev, A., (2021). “Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data”. Omega, Volume 101, June 2021, 102260.
Xie, C., Kockelman, K., Travis, W., (2011). “A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation” Transport. Res. Part B: Methodol. 45 (9), 1465–1482.
 
Yang, Z., Wang, Y., & Guan, Q. (2006). “A short-term traffic flow forecasting method based on support vector machine”. Journal of Jilin University (Engineering Science Edition), 36(6), 881–884.
 
Yi Yin, Pengjian Shang, (2016), “Forecasting traffic time series with multivariate predicting Method”, Applied Mathematics and Computation 291, 266–278.
 
Zhang, H., Nie, Y., Qian, Z., (2008). “Estimating time-dependent freeway origin-destination demands with different data coverage: sensitivity analysis.” Transport. Res. Record: J. Transport. Res. Board (2047), 91–99.
 
Zhang, J., Che. H., Chen. F., Ma, W., He, Z., (2021). “Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise attentive split-convolutional neural network method”, Transportation Research Part C: Emerging Technologies Volume 124, 102928.
 
Zhang, Xiaobo, and Jianzhou Wang. (2018). “A Novel Decomposition‐ensemble Model for Forecasting Short‐term Load‐time Series with Multiple Seasonal Patterns”. Applied Soft Computing Journal 65: 478–94.
 
Zhen Chen., Wei Fan., (2018). “Extracting bus transit boarding stop information using smart card transaction data”. J. Mod. Transport. 26(3), 209–219.
 
Zhou, X., Mahmassani, H., (2007). “A structural state space model for real-time traffic Origin-Destination demand estimation and prediction in a day-to-day learning framework.” Transport. Res. Part B: Methodol. 41 (8), 823–840.